Zehui Gu, Yuyang He, Jinghu Ji, Yifan Wei, Yonghong Fu
{"title":"Reducing the taper and heat-affected zone in nanosecond laser drilling of CFRP plate using backside sacrificial layer","authors":"Zehui Gu, Yuyang He, Jinghu Ji, Yifan Wei, Yonghong Fu","doi":"10.1016/j.optlaseng.2024.108735","DOIUrl":null,"url":null,"abstract":"<div><div>Owing to the anisotropic and heterogeneous properties of carbon fiber reinforced plastics (CFRP), laser drilling processes often lead to substantial heat-affected zone (HAZ) and taper formation. The introduction of a medium to facilitate heat conduction during laser processing has emerged as an efficacious strategy to mitigate these challenges. In this study, a sacrificial layer was added to the back of the CFRP plate to reduce the taper and HAZ produced by laser drilling. The effects of laser power, scanning speed, and pulse frequency on hole surface morphology and HAZ evolution were investigated. By adding a sacrificial layer, the taper was reduced by 4.6 % to 31.4 %, the exit roundness im-proved by 1.11 % to 2.56 %, and the HAZ on the exit surface decreased by 47.6 % to 61.9 %. The sacrificial layer had minimal impact on the entrance diameter and HAZ. This study provides a reference for improving the quality of laser drilling in CFRP plates.</div></div>","PeriodicalId":49719,"journal":{"name":"Optics and Lasers in Engineering","volume":"185 ","pages":"Article 108735"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics and Lasers in Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0143816624007152","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Owing to the anisotropic and heterogeneous properties of carbon fiber reinforced plastics (CFRP), laser drilling processes often lead to substantial heat-affected zone (HAZ) and taper formation. The introduction of a medium to facilitate heat conduction during laser processing has emerged as an efficacious strategy to mitigate these challenges. In this study, a sacrificial layer was added to the back of the CFRP plate to reduce the taper and HAZ produced by laser drilling. The effects of laser power, scanning speed, and pulse frequency on hole surface morphology and HAZ evolution were investigated. By adding a sacrificial layer, the taper was reduced by 4.6 % to 31.4 %, the exit roundness im-proved by 1.11 % to 2.56 %, and the HAZ on the exit surface decreased by 47.6 % to 61.9 %. The sacrificial layer had minimal impact on the entrance diameter and HAZ. This study provides a reference for improving the quality of laser drilling in CFRP plates.
期刊介绍:
Optics and Lasers in Engineering aims at providing an international forum for the interchange of information on the development of optical techniques and laser technology in engineering. Emphasis is placed on contributions targeted at the practical use of methods and devices, the development and enhancement of solutions and new theoretical concepts for experimental methods.
Optics and Lasers in Engineering reflects the main areas in which optical methods are being used and developed for an engineering environment. Manuscripts should offer clear evidence of novelty and significance. Papers focusing on parameter optimization or computational issues are not suitable. Similarly, papers focussed on an application rather than the optical method fall outside the journal''s scope. The scope of the journal is defined to include the following:
-Optical Metrology-
Optical Methods for 3D visualization and virtual engineering-
Optical Techniques for Microsystems-
Imaging, Microscopy and Adaptive Optics-
Computational Imaging-
Laser methods in manufacturing-
Integrated optical and photonic sensors-
Optics and Photonics in Life Science-
Hyperspectral and spectroscopic methods-
Infrared and Terahertz techniques