María Cristina Casero , David Velázquez, Adrián Pereira, María del Mar Tejedor, Luis García, Antonio Quesada, Samuel Cirés
{"title":"Hidden inside desert rocks: Salinity triggers an increase in exopolysaccharides from endolithic cyanobacteria with anti-inflammatory potential","authors":"María Cristina Casero , David Velázquez, Adrián Pereira, María del Mar Tejedor, Luis García, Antonio Quesada, Samuel Cirés","doi":"10.1016/j.algal.2024.103817","DOIUrl":null,"url":null,"abstract":"<div><div>Endolithic cyanobacteria thriving in rocks of deserts remain an unexplored source for the quest of novel bioproducts in extreme environments. In this work, 7 endolithic cyanobacteria from the polyextreme Atacama Desert, covering four genera and three lithic substrates, were investigated for the production of exopolysaccharides with anti-inflammatory potential. A moderate salinity (20 g NaCl L<sup>−1</sup>) was tolerated by all strains, triggering a 3–9-fold increase in exopolysaccharides (EPS) yield in 4 of them that counteracted the growth decrease due to NaCl stress. EPS from all strains showed anti-elastase activity with inter-strain and inter-salinity variations. The moderate EPS productivity by <em>Gloeocapsa</em> sp. UAM572 (0.4 mg EPS L<sup>−1</sup> day<sup>−1</sup>), elevated anti-elastase capacity of <em>Chroococcidiopsis</em> sp. UAM579 EPS (IC<sub>50</sub> = 78 μg mL<sup>−1</sup>) and the first biotechnological data of genus <em>Pseudoacaryochloris</em>, provide a promising foundation for potential applications of EPS from endolithic cyanobacteria in cosmetics and biomedicine, whose opportunities and challenges are discussed herein.</div></div>","PeriodicalId":7855,"journal":{"name":"Algal Research-Biomass Biofuels and Bioproducts","volume":"84 ","pages":"Article 103817"},"PeriodicalIF":4.6000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algal Research-Biomass Biofuels and Bioproducts","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211926424004296","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Endolithic cyanobacteria thriving in rocks of deserts remain an unexplored source for the quest of novel bioproducts in extreme environments. In this work, 7 endolithic cyanobacteria from the polyextreme Atacama Desert, covering four genera and three lithic substrates, were investigated for the production of exopolysaccharides with anti-inflammatory potential. A moderate salinity (20 g NaCl L−1) was tolerated by all strains, triggering a 3–9-fold increase in exopolysaccharides (EPS) yield in 4 of them that counteracted the growth decrease due to NaCl stress. EPS from all strains showed anti-elastase activity with inter-strain and inter-salinity variations. The moderate EPS productivity by Gloeocapsa sp. UAM572 (0.4 mg EPS L−1 day−1), elevated anti-elastase capacity of Chroococcidiopsis sp. UAM579 EPS (IC50 = 78 μg mL−1) and the first biotechnological data of genus Pseudoacaryochloris, provide a promising foundation for potential applications of EPS from endolithic cyanobacteria in cosmetics and biomedicine, whose opportunities and challenges are discussed herein.
期刊介绍:
Algal Research is an international phycology journal covering all areas of emerging technologies in algae biology, biomass production, cultivation, harvesting, extraction, bioproducts, biorefinery, engineering, and econometrics. Algae is defined to include cyanobacteria, microalgae, and protists and symbionts of interest in biotechnology. The journal publishes original research and reviews for the following scope: algal biology, including but not exclusive to: phylogeny, biodiversity, molecular traits, metabolic regulation, and genetic engineering, algal cultivation, e.g. phototrophic systems, heterotrophic systems, and mixotrophic systems, algal harvesting and extraction systems, biotechnology to convert algal biomass and components into biofuels and bioproducts, e.g., nutraceuticals, pharmaceuticals, animal feed, plastics, etc. algal products and their economic assessment