Julian Holland, Cristiana Lungu, Rudolf Weber, Max Emperle, Thomas Graf
{"title":"Impact of repetitive, ultra-short soft X-ray pulses from processing of steel with ultrafast lasers on human cell cultures","authors":"Julian Holland, Cristiana Lungu, Rudolf Weber, Max Emperle, Thomas Graf","doi":"10.1007/s00339-024-08134-x","DOIUrl":null,"url":null,"abstract":"<div><p>Ultrafast lasers, with pulse durations below a few picoseconds, are of significant interest to the industry, offering a cutting-edge approach to enhancing manufacturing processes and enabling the fabrication of intricate components with unparalleled accuracy. When processing metals at irradiances exceeding the evaporation threshold of about 10<sup>10</sup> W/cm² these processes can generate ultra-short, soft X-ray pulses with photon energies above 5 keV. This has prompted extensive discussions and regulatory measures on radiation safety. However, the impact of these ultra-short X-ray pulses on molecular pathways in the context of living cells, has not been investigated so far. This paper presents the first molecular characterization of epithelial cell responses to ultra-short soft X-ray pulses, generated during processing of steel with an ultrafast laser. The laser provided pulses of 6.7 ps with a pulse repetition rate of 300 kHz and an average power of 500 W. The irradiance was 1.95 ×10<sup>13</sup> W/cm<sup>2</sup>. Ambient exposure of vitro human cell cultures, followed by imaging of the DNA damage response and fitting of the data to a calibrated model for the absorbed dose, revealed a linear increase in the DNA damage response relative to the exposure dose. This is in line with findings from work using continuous wave soft X-ray sources and suggests that the ultra-short X-ray pulses do not generate additional hazard. This research contributes valuable insights into the biological effects of ultrafast laser processes and their potential implications for user safety.</p></div>","PeriodicalId":473,"journal":{"name":"Applied Physics A","volume":"130 12","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00339-024-08134-x.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics A","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s00339-024-08134-x","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Ultrafast lasers, with pulse durations below a few picoseconds, are of significant interest to the industry, offering a cutting-edge approach to enhancing manufacturing processes and enabling the fabrication of intricate components with unparalleled accuracy. When processing metals at irradiances exceeding the evaporation threshold of about 1010 W/cm² these processes can generate ultra-short, soft X-ray pulses with photon energies above 5 keV. This has prompted extensive discussions and regulatory measures on radiation safety. However, the impact of these ultra-short X-ray pulses on molecular pathways in the context of living cells, has not been investigated so far. This paper presents the first molecular characterization of epithelial cell responses to ultra-short soft X-ray pulses, generated during processing of steel with an ultrafast laser. The laser provided pulses of 6.7 ps with a pulse repetition rate of 300 kHz and an average power of 500 W. The irradiance was 1.95 ×1013 W/cm2. Ambient exposure of vitro human cell cultures, followed by imaging of the DNA damage response and fitting of the data to a calibrated model for the absorbed dose, revealed a linear increase in the DNA damage response relative to the exposure dose. This is in line with findings from work using continuous wave soft X-ray sources and suggests that the ultra-short X-ray pulses do not generate additional hazard. This research contributes valuable insights into the biological effects of ultrafast laser processes and their potential implications for user safety.
期刊介绍:
Applied Physics A publishes experimental and theoretical investigations in applied physics as regular articles, rapid communications, and invited papers. The distinguished 30-member Board of Editors reflects the interdisciplinary approach of the journal and ensures the highest quality of peer review.