Colorimetric sensor array for sensitive detection and identification of bacteria based on the etching of triangular silver nanoparticles regulated by Cl− at various concentrations
{"title":"Colorimetric sensor array for sensitive detection and identification of bacteria based on the etching of triangular silver nanoparticles regulated by Cl− at various concentrations","authors":"Shuang Liu, Peng Yan, Shahzad Naveed, Yuheng Zhu, Tao Fu, Ruijing Wu, Yayan Wu","doi":"10.1007/s00604-024-06855-7","DOIUrl":null,"url":null,"abstract":"<div><p>A colorimetric sensor array is proposed for ultrasensitive detection and identification of bacteria by using Cl<sup>−</sup> at various concentrations as sensing elements and triangular silver nanoparticles (T-AgNPs) as a single sensing nanoprobe. T-AgNPs are easily etched by Cl<sup>−</sup>. However, in the presence of bacteria, the etching process will be hindered. Different bacteria have differential protective effects on T-AgNPs due to their interactions, resulting in different etching degrees of T-AgNPs by Cl<sup>−</sup>, and visual color changes. By adjusting the antagonistic action between bacteria protection on T-AgNPs and the etching by using Cl<sup>−</sup> at various concentrations, different bacteria had their own color response patterns. Combined with linear discriminant analysis (LDA) and orthogonal partial least squares-discriminant analysis (OPLS-DA), the bacteria could be identified. The method was also used for bacteria mixtures identification and showed high sensitivity (OD<sub>600</sub> = 1.0 × 10<sup>−6</sup>) for <i>V. parahaemolyticus</i> detection. Finally, the sensor array was successfully utilized in the identification of bacteria in pure and mineral bottled water. The method is low-cost, simple, sensitive, visual, and has potential application in point-of-care testing of bacteria.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":705,"journal":{"name":"Microchimica Acta","volume":"192 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microchimica Acta","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00604-024-06855-7","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
A colorimetric sensor array is proposed for ultrasensitive detection and identification of bacteria by using Cl− at various concentrations as sensing elements and triangular silver nanoparticles (T-AgNPs) as a single sensing nanoprobe. T-AgNPs are easily etched by Cl−. However, in the presence of bacteria, the etching process will be hindered. Different bacteria have differential protective effects on T-AgNPs due to their interactions, resulting in different etching degrees of T-AgNPs by Cl−, and visual color changes. By adjusting the antagonistic action between bacteria protection on T-AgNPs and the etching by using Cl− at various concentrations, different bacteria had their own color response patterns. Combined with linear discriminant analysis (LDA) and orthogonal partial least squares-discriminant analysis (OPLS-DA), the bacteria could be identified. The method was also used for bacteria mixtures identification and showed high sensitivity (OD600 = 1.0 × 10−6) for V. parahaemolyticus detection. Finally, the sensor array was successfully utilized in the identification of bacteria in pure and mineral bottled water. The method is low-cost, simple, sensitive, visual, and has potential application in point-of-care testing of bacteria.
期刊介绍:
As a peer-reviewed journal for analytical sciences and technologies on the micro- and nanoscale, Microchimica Acta has established itself as a premier forum for truly novel approaches in chemical and biochemical analysis. Coverage includes methods and devices that provide expedient solutions to the most contemporary demands in this area. Examples are point-of-care technologies, wearable (bio)sensors, in-vivo-monitoring, micro/nanomotors and materials based on synthetic biology as well as biomedical imaging and targeting.