Disrupted Spin Degeneracy Promoted C≡C Triple Bond Activation for Efficient Electrochemical Acetylene Semihydrogenation

IF 11.3 1区 化学 Q1 CHEMISTRY, PHYSICAL ACS Catalysis Pub Date : 2024-12-02 DOI:10.1021/acscatal.4c06191
Menglei Yuan, Hongyu Jiang, Ruyi Jiang, Zhao Wang, Zhi-Hao Zhao, Bao-lian Su, Jian Zhang
{"title":"Disrupted Spin Degeneracy Promoted C≡C Triple Bond Activation for Efficient Electrochemical Acetylene Semihydrogenation","authors":"Menglei Yuan, Hongyu Jiang, Ruyi Jiang, Zhao Wang, Zhi-Hao Zhao, Bao-lian Su, Jian Zhang","doi":"10.1021/acscatal.4c06191","DOIUrl":null,"url":null,"abstract":"Disrupting the spin degeneracy of the electrocatalyst and further manipulating the related orbital electron arrangement are highly desirable for activating acetylene molecules. Herein, a squarate cobalt-based metal–organic framework (Co-MOF) ([Co<sub>3</sub>(C<sub>4</sub>O<sub>4</sub>)<sub>2</sub>(OH)<sub>2</sub>]·3H<sub>2</sub>O) is post-treated to accelerate the evolution from CoO<sub>6</sub> octahedron to CoO<sub>5</sub> pentahedron and further utilized for the electrochemical acetylene semihydrogenation reaction. Comprehensive analyses corroborate that the disrupted spin degeneracy of active sites originated from the breakage of the Co–O bond, which promotes the cleavage of the orbital energy level and the rearrangement of the d-orbital electron. The newly emerged half-occupied d<sub><i>x</i></sub><sup>2</sup><sub>–y</sub><sup>2</sup> orbitals and empty d<sub><i>z</i></sub><sup>2</sup> orbitals in CoO<sub>5</sub> pentahedron concerted interplay with the bonding and antibonding orbitals of acetylene, which reduces the adsorption energy of acetylene and facilitates the activation of the inert C≡C triple bond. Thus, the defective Co-MOF exhibits the superior ethylene Faradaic efficiency of 96% and partial current density of 128 mA cm<sup>–2</sup> at −1.0 V vs RHE compared to that of pristine Co-MOF (FE<sub>C2H4</sub>: 60%; <i>J</i><sub>C2H4</sub>: 66 mA cm<sup>–2</sup>). This work delivers inspiration for spin-state regulation of active sites and sparks renewed interest in designing highly efficient electrocatalysts.","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":"45 1","pages":""},"PeriodicalIF":11.3000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acscatal.4c06191","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Disrupting the spin degeneracy of the electrocatalyst and further manipulating the related orbital electron arrangement are highly desirable for activating acetylene molecules. Herein, a squarate cobalt-based metal–organic framework (Co-MOF) ([Co3(C4O4)2(OH)2]·3H2O) is post-treated to accelerate the evolution from CoO6 octahedron to CoO5 pentahedron and further utilized for the electrochemical acetylene semihydrogenation reaction. Comprehensive analyses corroborate that the disrupted spin degeneracy of active sites originated from the breakage of the Co–O bond, which promotes the cleavage of the orbital energy level and the rearrangement of the d-orbital electron. The newly emerged half-occupied dx2–y2 orbitals and empty dz2 orbitals in CoO5 pentahedron concerted interplay with the bonding and antibonding orbitals of acetylene, which reduces the adsorption energy of acetylene and facilitates the activation of the inert C≡C triple bond. Thus, the defective Co-MOF exhibits the superior ethylene Faradaic efficiency of 96% and partial current density of 128 mA cm–2 at −1.0 V vs RHE compared to that of pristine Co-MOF (FEC2H4: 60%; JC2H4: 66 mA cm–2). This work delivers inspiration for spin-state regulation of active sites and sparks renewed interest in designing highly efficient electrocatalysts.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Catalysis
ACS Catalysis CHEMISTRY, PHYSICAL-
CiteScore
20.80
自引率
6.20%
发文量
1253
审稿时长
1.5 months
期刊介绍: ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels. The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.
期刊最新文献
Artificial Intelligence-Driven Development of Nickel-Catalyzed Enantioselective Cross-Coupling Reactions Photocatalytic Carboxylation of Terminal Alkynes with CO2 over Metal–Porphyrin Framework Nanosheets Disrupted Spin Degeneracy Promoted C≡C Triple Bond Activation for Efficient Electrochemical Acetylene Semihydrogenation Tailoring the Coordination Environment of Cu Single Atoms for Achieving Regioselective C–C Bond Activation of Amides Controlling Cubic versus Octahedral Morphology in Plasmonic Aluminum Nanoparticle Synthesis with Titanocene Catalysts: A Systematic Study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1