{"title":"Artificial Intelligence-Driven Development of Nickel-Catalyzed Enantioselective Cross-Coupling Reactions","authors":"Yadong Gao, Kunjun Hu, Jianhang Rao, Qiang Zhu, Kuangbiao Liao","doi":"10.1021/acscatal.4c04277","DOIUrl":null,"url":null,"abstract":"The conventional approach to developing asymmetric synthetic methods relies heavily on empirical optimization. However, the integration of artificial intelligence (AI) and high-throughput experimentation (HTE) technology presents a paradigm shift with immense potential to revolutionize the discovery and optimization of asymmetric reactions. In this study, we present an efficient workflow for the development of a series of nickel-catalyzed asymmetric cross-coupling reactions, leveraging AI and HTE technology. Many nickel-catalyzed enantioselective cross-coupling reactions share a common Ni(III) intermediate, which dictates the enantioselectivity. To harness this mechanistic insight, we embarked on developing a predictive model for nickel-catalyzed enantioselective coupling reactions, elucidating the general rules governing enantioselectivity. Through the application of data science tools and HTE technology, we curated a data set to construct an AI-based model. This model was subsequently utilized to facilitate the discovery of efficient nickel hydride-catalyzed enantioselective and regioselective cross-coupling reactions. Employing AI-assisted virtual ligand screening and HTE-enabled condition optimization, we successfully identified optimal ligands for eight coupling reactions. Consequently, a series of chiral sp<sup>3</sup> C–C bonds were synthesized with high yield and enantioselectivity.","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":"200 1","pages":""},"PeriodicalIF":11.3000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acscatal.4c04277","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The conventional approach to developing asymmetric synthetic methods relies heavily on empirical optimization. However, the integration of artificial intelligence (AI) and high-throughput experimentation (HTE) technology presents a paradigm shift with immense potential to revolutionize the discovery and optimization of asymmetric reactions. In this study, we present an efficient workflow for the development of a series of nickel-catalyzed asymmetric cross-coupling reactions, leveraging AI and HTE technology. Many nickel-catalyzed enantioselective cross-coupling reactions share a common Ni(III) intermediate, which dictates the enantioselectivity. To harness this mechanistic insight, we embarked on developing a predictive model for nickel-catalyzed enantioselective coupling reactions, elucidating the general rules governing enantioselectivity. Through the application of data science tools and HTE technology, we curated a data set to construct an AI-based model. This model was subsequently utilized to facilitate the discovery of efficient nickel hydride-catalyzed enantioselective and regioselective cross-coupling reactions. Employing AI-assisted virtual ligand screening and HTE-enabled condition optimization, we successfully identified optimal ligands for eight coupling reactions. Consequently, a series of chiral sp3 C–C bonds were synthesized with high yield and enantioselectivity.
期刊介绍:
ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels.
The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.