Genome-wide association analyses identify distinct genetic architectures for age-related macular degeneration across ancestries

IF 31.7 1区 生物学 Q1 GENETICS & HEREDITY Nature genetics Pub Date : 2024-12-02 DOI:10.1038/s41588-024-01764-0
Bryan R. Gorman, Georgios Voloudakis, Robert P. Igo, Tyler Kinzy, Christopher W. Halladay, Tim B. Bigdeli, Biao Zeng, Sanan Venkatesh, Jessica N. Cooke Bailey, Dana C. Crawford, Kyriacos Markianos, Frederick Dong, Patrick A. Schreiner, Wen Zhang, Tamer Hadi, Matthew D. Anger, Amy Stockwell, Ronald B. Melles, Jie Yin, Hélène Choquet, Rebecca Kaye, Karina Patasova, Praveen J. Patel, Brian L. Yaspan, Eric Jorgenson, Pirro G. Hysi, Andrew J. Lotery, J. Michael Gaziano, Philip S. Tsao, Steven J. Fliesler, Jack M. Sullivan, Paul B. Greenberg, Wen-Chih Wu, Themistocles L. Assimes, Saiju Pyarajan, Panos Roussos, Neal S. Peachey, Sudha K. Iyengar
{"title":"Genome-wide association analyses identify distinct genetic architectures for age-related macular degeneration across ancestries","authors":"Bryan R. Gorman, Georgios Voloudakis, Robert P. Igo, Tyler Kinzy, Christopher W. Halladay, Tim B. Bigdeli, Biao Zeng, Sanan Venkatesh, Jessica N. Cooke Bailey, Dana C. Crawford, Kyriacos Markianos, Frederick Dong, Patrick A. Schreiner, Wen Zhang, Tamer Hadi, Matthew D. Anger, Amy Stockwell, Ronald B. Melles, Jie Yin, Hélène Choquet, Rebecca Kaye, Karina Patasova, Praveen J. Patel, Brian L. Yaspan, Eric Jorgenson, Pirro G. Hysi, Andrew J. Lotery, J. Michael Gaziano, Philip S. Tsao, Steven J. Fliesler, Jack M. Sullivan, Paul B. Greenberg, Wen-Chih Wu, Themistocles L. Assimes, Saiju Pyarajan, Panos Roussos, Neal S. Peachey, Sudha K. Iyengar","doi":"10.1038/s41588-024-01764-0","DOIUrl":null,"url":null,"abstract":"<p>To effectively reduce vision loss due to age-related macular generation (AMD) on a global scale, knowledge of its genetic architecture in diverse populations is necessary. A critical element, AMD risk profiles in African and Hispanic/Latino ancestries, remains largely unknown. We combined data in the Million Veteran Program with five other cohorts to conduct the first multi-ancestry genome-wide association study of AMD and discovered 63 loci (30 novel). We observe marked cross-ancestry heterogeneity at major risk loci, especially in African-ancestry populations which demonstrate a primary signal in a major histocompatibility complex class II haplotype and reduced risk at the established <i>CFH</i> and <i>ARMS2/HTRA1</i> loci. Dissecting local ancestry in admixed individuals, we find significantly smaller marginal effect sizes for <i>CFH</i> risk alleles in African ancestry haplotypes. Broadening efforts to include ancestrally distinct populations helped uncover genes and pathways that boost risk in an ancestry-dependent manner and are potential targets for corrective therapies.</p>","PeriodicalId":18985,"journal":{"name":"Nature genetics","volume":"76 1","pages":""},"PeriodicalIF":31.7000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41588-024-01764-0","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

To effectively reduce vision loss due to age-related macular generation (AMD) on a global scale, knowledge of its genetic architecture in diverse populations is necessary. A critical element, AMD risk profiles in African and Hispanic/Latino ancestries, remains largely unknown. We combined data in the Million Veteran Program with five other cohorts to conduct the first multi-ancestry genome-wide association study of AMD and discovered 63 loci (30 novel). We observe marked cross-ancestry heterogeneity at major risk loci, especially in African-ancestry populations which demonstrate a primary signal in a major histocompatibility complex class II haplotype and reduced risk at the established CFH and ARMS2/HTRA1 loci. Dissecting local ancestry in admixed individuals, we find significantly smaller marginal effect sizes for CFH risk alleles in African ancestry haplotypes. Broadening efforts to include ancestrally distinct populations helped uncover genes and pathways that boost risk in an ancestry-dependent manner and are potential targets for corrective therapies.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature genetics
Nature genetics 生物-遗传学
CiteScore
43.00
自引率
2.60%
发文量
241
审稿时长
3 months
期刊介绍: Nature Genetics publishes the very highest quality research in genetics. It encompasses genetic and functional genomic studies on human and plant traits and on other model organisms. Current emphasis is on the genetic basis for common and complex diseases and on the functional mechanism, architecture and evolution of gene networks, studied by experimental perturbation. Integrative genetic topics comprise, but are not limited to: -Genes in the pathology of human disease -Molecular analysis of simple and complex genetic traits -Cancer genetics -Agricultural genomics -Developmental genetics -Regulatory variation in gene expression -Strategies and technologies for extracting function from genomic data -Pharmacological genomics -Genome evolution
期刊最新文献
Single-cell RNA sequencing of peripheral blood links cell-type-specific regulation of splicing to autoimmune and inflammatory diseases A blueprint to discovering synthetic lethal gene interactions for precision oncology Genome-wide association analyses identify distinct genetic architectures for age-related macular degeneration across ancestries A cautionary tale for Alzheimer’s disease GWAS by proxy Single-cell genomics breaks new ground in cell cycle detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1