Cong Gao, Dongying Li, Aiting Xie, Yanchao Lyu, Qingqing Sun, Jie Han, Rong Guo
{"title":"Metal Ion-Mediated Supramolecular Nanotube Catalyst for Enantioselective Reactions","authors":"Cong Gao, Dongying Li, Aiting Xie, Yanchao Lyu, Qingqing Sun, Jie Han, Rong Guo","doi":"10.1021/acs.langmuir.4c04060","DOIUrl":null,"url":null,"abstract":"Rational control over the morphologies of supramolecular assemblies for asymmetric catalysis with enhanced enantioselectivity represents a pivotal challenge in the realm of synthetic chemistry and material technology. Herein, Cu(II) ion-mediated supramolecular nanostructures assembled from chiral amino acid-based amphiphiles (<span>l</span>/<span>d</span>-AlaC<sub>16</sub>) are fabricated as chiral catalysts for Diels–Alder cycloaddition between aza-chalcone and cyclopentadiene. In particular, compared with the supramolecular nanosheet formed by <span>l</span>/<span>d</span>-AlaC<sub>16</sub> without Cu(II) ions, we found that the <span>l</span>/<span>d</span>-alanine chiral amphiphile can form supramolecular nanotubes with a multilayer structure and with the thickness of the tubular wall about 15 nm through the transition from a nanoribbon to tubular structure in the presence of Cu(II) ions. Consequently, the catalytic enantioselectivity of Diels–Alder was improved from 6% (nanosheet) to 49% (nanotube), attributed to the curved surface of the nanotube structure, which provides a preferential chiral environment and high density of the catalytic center to favor the chirality transfer. Our study presented in this work offers valuable insights for designing chiral supramolecular catalysts with a higher enantioselectivity driven by a metal ions-mediated nanostructure.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"204 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.4c04060","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Rational control over the morphologies of supramolecular assemblies for asymmetric catalysis with enhanced enantioselectivity represents a pivotal challenge in the realm of synthetic chemistry and material technology. Herein, Cu(II) ion-mediated supramolecular nanostructures assembled from chiral amino acid-based amphiphiles (l/d-AlaC16) are fabricated as chiral catalysts for Diels–Alder cycloaddition between aza-chalcone and cyclopentadiene. In particular, compared with the supramolecular nanosheet formed by l/d-AlaC16 without Cu(II) ions, we found that the l/d-alanine chiral amphiphile can form supramolecular nanotubes with a multilayer structure and with the thickness of the tubular wall about 15 nm through the transition from a nanoribbon to tubular structure in the presence of Cu(II) ions. Consequently, the catalytic enantioselectivity of Diels–Alder was improved from 6% (nanosheet) to 49% (nanotube), attributed to the curved surface of the nanotube structure, which provides a preferential chiral environment and high density of the catalytic center to favor the chirality transfer. Our study presented in this work offers valuable insights for designing chiral supramolecular catalysts with a higher enantioselectivity driven by a metal ions-mediated nanostructure.
期刊介绍:
Langmuir is an interdisciplinary journal publishing articles in the following subject categories:
Colloids: surfactants and self-assembly, dispersions, emulsions, foams
Interfaces: adsorption, reactions, films, forces
Biological Interfaces: biocolloids, biomolecular and biomimetic materials
Materials: nano- and mesostructured materials, polymers, gels, liquid crystals
Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry
Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals
However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do?
Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*.
This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).