MoCHI: neural networks to fit interpretable models and quantify energies, energetic couplings, epistasis, and allostery from deep mutational scanning data
{"title":"MoCHI: neural networks to fit interpretable models and quantify energies, energetic couplings, epistasis, and allostery from deep mutational scanning data","authors":"Andre J. Faure, Ben Lehner","doi":"10.1186/s13059-024-03444-y","DOIUrl":null,"url":null,"abstract":"We present MoCHI, a tool to fit interpretable models using deep mutational scanning data. MoCHI infers free energy changes, as well as interaction terms (energetic couplings) for specified biophysical models, including from multimodal phenotypic data. When a user-specified model is unavailable, global nonlinearities (epistasis) can be estimated from the data. MoCHI also leverages ensemble, background-averaged epistasis to learn sparse models that can incorporate higher-order epistatic terms. MoCHI is freely available as a Python package ( https://github.com/lehner-lab/MoCHI ) relying on the PyTorch machine learning framework and allows biophysical measurements at scale, including the construction of allosteric maps of proteins.","PeriodicalId":12611,"journal":{"name":"Genome Biology","volume":"26 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13059-024-03444-y","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
We present MoCHI, a tool to fit interpretable models using deep mutational scanning data. MoCHI infers free energy changes, as well as interaction terms (energetic couplings) for specified biophysical models, including from multimodal phenotypic data. When a user-specified model is unavailable, global nonlinearities (epistasis) can be estimated from the data. MoCHI also leverages ensemble, background-averaged epistasis to learn sparse models that can incorporate higher-order epistatic terms. MoCHI is freely available as a Python package ( https://github.com/lehner-lab/MoCHI ) relying on the PyTorch machine learning framework and allows biophysical measurements at scale, including the construction of allosteric maps of proteins.
Genome BiologyBiochemistry, Genetics and Molecular Biology-Genetics
CiteScore
21.00
自引率
3.30%
发文量
241
审稿时长
2 months
期刊介绍:
Genome Biology stands as a premier platform for exceptional research across all domains of biology and biomedicine, explored through a genomic and post-genomic lens.
With an impressive impact factor of 12.3 (2022),* the journal secures its position as the 3rd-ranked research journal in the Genetics and Heredity category and the 2nd-ranked research journal in the Biotechnology and Applied Microbiology category by Thomson Reuters. Notably, Genome Biology holds the distinction of being the highest-ranked open-access journal in this category.
Our dedicated team of highly trained in-house Editors collaborates closely with our esteemed Editorial Board of international experts, ensuring the journal remains on the forefront of scientific advances and community standards. Regular engagement with researchers at conferences and institute visits underscores our commitment to staying abreast of the latest developments in the field.