Concurrent intratumoural Treg cell depletion and CD8+ T cell expansion via a cleavable anti-4-1BB–interleukin-15 fusion protein

IF 26.8 1区 医学 Q1 ENGINEERING, BIOMEDICAL Nature Biomedical Engineering Pub Date : 2024-12-02 DOI:10.1038/s41551-024-01303-6
Yueqi Cai, Zilong Han, Jiao Shen, Zhuangzhi Zou, Jingya Guo, Yong Liang, Shijie Li, Huiping Liao, Zhenhua Ren, Hua Peng, Yang-Xin Fu
{"title":"Concurrent intratumoural Treg cell depletion and CD8+ T cell expansion via a cleavable anti-4-1BB–interleukin-15 fusion protein","authors":"Yueqi Cai, Zilong Han, Jiao Shen, Zhuangzhi Zou, Jingya Guo, Yong Liang, Shijie Li, Huiping Liao, Zhenhua Ren, Hua Peng, Yang-Xin Fu","doi":"10.1038/s41551-024-01303-6","DOIUrl":null,"url":null,"abstract":"<p>Potent agonists of the inducible co-stimulatory receptor 4-1BB are too toxic for patients with advanced cancer. Here, on the basis of observations of a weak agonist of 4-1BB depleting regulatory T (T<sub>reg</sub>) cells within the tumour microenvironment without leading to substantial restoration of dysfunctional cytotoxic T cells (CTLs), we show that effective tumour control can be achieved via concurrent T<sub>reg</sub> cell depletion and CTL expansion through an anti-4-1BB antibody fused to interleukin-15 (IL-15) via a peptide sensitive to tumour proteases. In mouse models of advanced cancers, intraperitoneal injection of the bifunctional protein attenuated the activity of the interleukin mostly in the periphery of the primary tumour while allowing for the expansion of CTLs within the tumour microenvironment, led to more effective tumour inhibition and to lower systemic toxicity than treating the cancers with combinatorial treatment with unlinked anti-4-1BB antibody and IL-15, and reduced the resistance of tumours to checkpoint blockade. Concurrent eradication of T<sub>reg</sub> cells and activation of tumour-infiltrating lymphocytes may represent a general strategy for the effective control of advanced metastatic tumours.</p>","PeriodicalId":19063,"journal":{"name":"Nature Biomedical Engineering","volume":"74 1","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41551-024-01303-6","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Potent agonists of the inducible co-stimulatory receptor 4-1BB are too toxic for patients with advanced cancer. Here, on the basis of observations of a weak agonist of 4-1BB depleting regulatory T (Treg) cells within the tumour microenvironment without leading to substantial restoration of dysfunctional cytotoxic T cells (CTLs), we show that effective tumour control can be achieved via concurrent Treg cell depletion and CTL expansion through an anti-4-1BB antibody fused to interleukin-15 (IL-15) via a peptide sensitive to tumour proteases. In mouse models of advanced cancers, intraperitoneal injection of the bifunctional protein attenuated the activity of the interleukin mostly in the periphery of the primary tumour while allowing for the expansion of CTLs within the tumour microenvironment, led to more effective tumour inhibition and to lower systemic toxicity than treating the cancers with combinatorial treatment with unlinked anti-4-1BB antibody and IL-15, and reduced the resistance of tumours to checkpoint blockade. Concurrent eradication of Treg cells and activation of tumour-infiltrating lymphocytes may represent a general strategy for the effective control of advanced metastatic tumours.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Biomedical Engineering
Nature Biomedical Engineering Medicine-Medicine (miscellaneous)
CiteScore
45.30
自引率
1.10%
发文量
138
期刊介绍: Nature Biomedical Engineering is an online-only monthly journal that was launched in January 2017. It aims to publish original research, reviews, and commentary focusing on applied biomedicine and health technology. The journal targets a diverse audience, including life scientists who are involved in developing experimental or computational systems and methods to enhance our understanding of human physiology. It also covers biomedical researchers and engineers who are engaged in designing or optimizing therapies, assays, devices, or procedures for diagnosing or treating diseases. Additionally, clinicians, who make use of research outputs to evaluate patient health or administer therapy in various clinical settings and healthcare contexts, are also part of the target audience.
期刊最新文献
A two-phase point-of-care diagnostic device for bladder cancer Concurrent intratumoural Treg cell depletion and CD8+ T cell expansion via a cleavable anti-4-1BB–interleukin-15 fusion protein Magnetic-susceptibility-dependent ratiometric probes for enhancing quantitative MRI Antibiotic-driven boosting of oncolytic virotherapy Diagnosis of early-stage bladder cancer via unprocessed urine samples at the point of care
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1