Long-range regulation of transcription scales with genomic distance in a gene-specific manner

IF 14.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Molecular Cell Pub Date : 2024-12-02 DOI:10.1016/j.molcel.2024.10.021
Christina L. Jensen, Liang-Fu Chen, Tomek Swigut, Olivia J. Crocker, David Yao, Mike C. Bassik, James E. Ferrell, Alistair N. Boettiger, Joanna Wysocka
{"title":"Long-range regulation of transcription scales with genomic distance in a gene-specific manner","authors":"Christina L. Jensen, Liang-Fu Chen, Tomek Swigut, Olivia J. Crocker, David Yao, Mike C. Bassik, James E. Ferrell, Alistair N. Boettiger, Joanna Wysocka","doi":"10.1016/j.molcel.2024.10.021","DOIUrl":null,"url":null,"abstract":"Although critical for tuning the timing and level of transcription, enhancer communication with distal promoters is not well understood. Here, we bypass the need for sequence-specific transcription factors (TFs) and recruit activators directly using a chimeric array of gRNA oligos to target dCas9 fused to the activator VP64-p65-Rta (CARGO-VPR). We show that this approach achieves effective activator recruitment to arbitrary genomic sites, even those inaccessible when targeted with a single guide. We utilize CARGO-VPR across the <em>Prdm8-Fgf5</em> locus in mouse embryonic stem cells (mESCs), where neither gene is expressed. Although activator recruitment to any tested region results in the transcriptional induction of at least one gene, the expression level strongly depends on the genomic distance between the promoter and activator recruitment site. However, the expression-distance relationship for each gene scales distinctly in a manner not attributable to differences in 3D contact frequency, promoter DNA sequence, or the presence of repressive chromatin marks at the locus.","PeriodicalId":18950,"journal":{"name":"Molecular Cell","volume":"205 1","pages":""},"PeriodicalIF":14.5000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.molcel.2024.10.021","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Although critical for tuning the timing and level of transcription, enhancer communication with distal promoters is not well understood. Here, we bypass the need for sequence-specific transcription factors (TFs) and recruit activators directly using a chimeric array of gRNA oligos to target dCas9 fused to the activator VP64-p65-Rta (CARGO-VPR). We show that this approach achieves effective activator recruitment to arbitrary genomic sites, even those inaccessible when targeted with a single guide. We utilize CARGO-VPR across the Prdm8-Fgf5 locus in mouse embryonic stem cells (mESCs), where neither gene is expressed. Although activator recruitment to any tested region results in the transcriptional induction of at least one gene, the expression level strongly depends on the genomic distance between the promoter and activator recruitment site. However, the expression-distance relationship for each gene scales distinctly in a manner not attributable to differences in 3D contact frequency, promoter DNA sequence, or the presence of repressive chromatin marks at the locus.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Cell
Molecular Cell 生物-生化与分子生物学
CiteScore
26.00
自引率
3.80%
发文量
389
审稿时长
1 months
期刊介绍: Molecular Cell is a companion to Cell, the leading journal of biology and the highest-impact journal in the world. Launched in December 1997 and published monthly. Molecular Cell is dedicated to publishing cutting-edge research in molecular biology, focusing on fundamental cellular processes. The journal encompasses a wide range of topics, including DNA replication, recombination, and repair; Chromatin biology and genome organization; Transcription; RNA processing and decay; Non-coding RNA function; Translation; Protein folding, modification, and quality control; Signal transduction pathways; Cell cycle and checkpoints; Cell death; Autophagy; Metabolism.
期刊最新文献
Two-ended recombination at a Flp-nickase-broken replication fork Repair of replication-dependent double-strand breaks differs between the leading and lagging strands DNA hypomethylation promotes UHRF1-and SUV39H1/H2-dependent crosstalk between H3K18ub and H3K9me3 to reinforce heterochromatin states Enhancer cooperativity can compensate for loss of activity over large genomic distances Long-range regulation of transcription scales with genomic distance in a gene-specific manner
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1