DNA hypomethylation promotes UHRF1-and SUV39H1/H2-dependent crosstalk between H3K18ub and H3K9me3 to reinforce heterochromatin states

IF 14.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Molecular Cell Pub Date : 2024-12-03 DOI:10.1016/j.molcel.2024.11.009
Yanqing Liu, Joel A. Hrit, Alison A. Chomiak, Stephanie Stransky, Jordan R. Hoffman, Rochelle L. Tiedemann, Ashley K. Wiseman, Leena S. Kariapper, Bradley M. Dickson, Evan J. Worden, Christopher J. Fry, Simone Sidoli, Scott B. Rothbart
{"title":"DNA hypomethylation promotes UHRF1-and SUV39H1/H2-dependent crosstalk between H3K18ub and H3K9me3 to reinforce heterochromatin states","authors":"Yanqing Liu, Joel A. Hrit, Alison A. Chomiak, Stephanie Stransky, Jordan R. Hoffman, Rochelle L. Tiedemann, Ashley K. Wiseman, Leena S. Kariapper, Bradley M. Dickson, Evan J. Worden, Christopher J. Fry, Simone Sidoli, Scott B. Rothbart","doi":"10.1016/j.molcel.2024.11.009","DOIUrl":null,"url":null,"abstract":"Mono-ubiquitination of lysine 18 on histone H3 (H3K18ub), catalyzed by UHRF1, is a DNMT1 docking site that facilitates replication-coupled DNA methylation maintenance. Its functions beyond this are unknown. Here, we genomically map simultaneous increases in UHRF1-dependent H3K18ub and SUV39H1/H2-dependent H3K9me3 following DNMT1 inhibition. Mechanistically, transient accumulation of hemi-methylated DNA at CpG islands facilitates UHRF1 recruitment and E3 ligase activity toward H3K18. Notably, H3K18ub enhances SUV39H1/H2 methyltransferase activity and, in colon cancer cells, nucleates new H3K9me3 domains at CpG island promoters of DNA methylation-silenced tumor suppressor genes (TSGs). Disrupting UHRF1 enzyme activity prevents H3K9me3 accumulation while promoting PRC2-dependent H3K27me3 as a tertiary layer of gene repression in these regions. By contrast, disrupting H3K18ub-dependent SUV39H1/H2 activity enhances the transcriptional activating and antiproliferative effects of DNMT1 inhibition. Collectively, these findings reveal roles for UHRF1 and H3K18ub in regulating a hierarchy of repressive histone methylation signaling and rationalize a combination strategy for epigenetic cancer therapy.","PeriodicalId":18950,"journal":{"name":"Molecular Cell","volume":"9 1","pages":""},"PeriodicalIF":14.5000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.molcel.2024.11.009","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Mono-ubiquitination of lysine 18 on histone H3 (H3K18ub), catalyzed by UHRF1, is a DNMT1 docking site that facilitates replication-coupled DNA methylation maintenance. Its functions beyond this are unknown. Here, we genomically map simultaneous increases in UHRF1-dependent H3K18ub and SUV39H1/H2-dependent H3K9me3 following DNMT1 inhibition. Mechanistically, transient accumulation of hemi-methylated DNA at CpG islands facilitates UHRF1 recruitment and E3 ligase activity toward H3K18. Notably, H3K18ub enhances SUV39H1/H2 methyltransferase activity and, in colon cancer cells, nucleates new H3K9me3 domains at CpG island promoters of DNA methylation-silenced tumor suppressor genes (TSGs). Disrupting UHRF1 enzyme activity prevents H3K9me3 accumulation while promoting PRC2-dependent H3K27me3 as a tertiary layer of gene repression in these regions. By contrast, disrupting H3K18ub-dependent SUV39H1/H2 activity enhances the transcriptional activating and antiproliferative effects of DNMT1 inhibition. Collectively, these findings reveal roles for UHRF1 and H3K18ub in regulating a hierarchy of repressive histone methylation signaling and rationalize a combination strategy for epigenetic cancer therapy.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Cell
Molecular Cell 生物-生化与分子生物学
CiteScore
26.00
自引率
3.80%
发文量
389
审稿时长
1 months
期刊介绍: Molecular Cell is a companion to Cell, the leading journal of biology and the highest-impact journal in the world. Launched in December 1997 and published monthly. Molecular Cell is dedicated to publishing cutting-edge research in molecular biology, focusing on fundamental cellular processes. The journal encompasses a wide range of topics, including DNA replication, recombination, and repair; Chromatin biology and genome organization; Transcription; RNA processing and decay; Non-coding RNA function; Translation; Protein folding, modification, and quality control; Signal transduction pathways; Cell cycle and checkpoints; Cell death; Autophagy; Metabolism.
期刊最新文献
Two-ended recombination at a Flp-nickase-broken replication fork Repair of replication-dependent double-strand breaks differs between the leading and lagging strands DNA hypomethylation promotes UHRF1-and SUV39H1/H2-dependent crosstalk between H3K18ub and H3K9me3 to reinforce heterochromatin states Enhancer cooperativity can compensate for loss of activity over large genomic distances Long-range regulation of transcription scales with genomic distance in a gene-specific manner
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1