Mechanism of dihydroartemisinin in the treatment of ischaemia/reperfusion-induced acute kidney injury via network pharmacology, molecular dynamics simulation and experiments

IF 4.8 2区 医学 Q2 IMMUNOLOGY International immunopharmacology Pub Date : 2024-12-02 DOI:10.1016/j.intimp.2024.113705
Beibei Jiang , Jiahui Liu , Ziyi Qu , Yanqing Wang , Yuzhi Wang , Zhongtang Li , Xiaoming Jin , Yunlan Lao , Riming He , Shudong Yang
{"title":"Mechanism of dihydroartemisinin in the treatment of ischaemia/reperfusion-induced acute kidney injury via network pharmacology, molecular dynamics simulation and experiments","authors":"Beibei Jiang ,&nbsp;Jiahui Liu ,&nbsp;Ziyi Qu ,&nbsp;Yanqing Wang ,&nbsp;Yuzhi Wang ,&nbsp;Zhongtang Li ,&nbsp;Xiaoming Jin ,&nbsp;Yunlan Lao ,&nbsp;Riming He ,&nbsp;Shudong Yang","doi":"10.1016/j.intimp.2024.113705","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><div>To investigate whether dihydroartemisinin (DHA) attenuates ischaemia–reperfusion injury (IRI)-induced acute kidney injury (AKI) in mice by inhibiting oxidative stress and inflammation and to explore its potential molecular mechanisms.</div></div><div><h3>Materials and methods</h3><div>Network pharmacology analysis was used to screen relevant targets, and molecular docking of DHA with core targets was performed. Molecular dynamics simulation of the target with the lowest binding free energy, NQO1-DHA.The renal protective effect of DHA on the IRI-induced AKI mouse model was evaluated. The expression levels of NQO1, Nrf2 and other proteins were detected by Western blotting. The expression levels of Nrf2 and others were detected by immunohistochemistry (IHC) and immunofluorescence (IF).</div></div><div><h3>Results</h3><div>Through network pharmacological analysis, we obtained that PI3K/AKT and MAPK signaling pathway may be related to DHA in the treatment of AKI.Molecular dynamics simulation indicated that NQO1 is an important target protein for DHA to exert nephroprotective effects.Moreover, the potential molecular mechanisms were verified by experiments.DHA reduced the serum creatinine (Scr) and urea nitrogen (BUN) levels in AKI mice, significantly improved AKI pathology, alleviated oxidative stress and inflammatory injury, which may be related to its activation of the Nrf2 pathway and regulation of macrophage polarization.</div></div><div><h3>Conclusions</h3><div>Through network pharmacology, molecular dynamics simulation and experimental validation, we initially investigated that DHA alleviate AKI by ameliorating oxidative stress and inflammatory damage, which may be related to its activation of the Nrf2 pathway and the regulation of macrophage polarisation, which lays the foundation for subsequent in-depth study of the specific mechanism of action.</div></div>","PeriodicalId":13859,"journal":{"name":"International immunopharmacology","volume":"144 ","pages":"Article 113705"},"PeriodicalIF":4.8000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International immunopharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567576924022276","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Objective

To investigate whether dihydroartemisinin (DHA) attenuates ischaemia–reperfusion injury (IRI)-induced acute kidney injury (AKI) in mice by inhibiting oxidative stress and inflammation and to explore its potential molecular mechanisms.

Materials and methods

Network pharmacology analysis was used to screen relevant targets, and molecular docking of DHA with core targets was performed. Molecular dynamics simulation of the target with the lowest binding free energy, NQO1-DHA.The renal protective effect of DHA on the IRI-induced AKI mouse model was evaluated. The expression levels of NQO1, Nrf2 and other proteins were detected by Western blotting. The expression levels of Nrf2 and others were detected by immunohistochemistry (IHC) and immunofluorescence (IF).

Results

Through network pharmacological analysis, we obtained that PI3K/AKT and MAPK signaling pathway may be related to DHA in the treatment of AKI.Molecular dynamics simulation indicated that NQO1 is an important target protein for DHA to exert nephroprotective effects.Moreover, the potential molecular mechanisms were verified by experiments.DHA reduced the serum creatinine (Scr) and urea nitrogen (BUN) levels in AKI mice, significantly improved AKI pathology, alleviated oxidative stress and inflammatory injury, which may be related to its activation of the Nrf2 pathway and regulation of macrophage polarization.

Conclusions

Through network pharmacology, molecular dynamics simulation and experimental validation, we initially investigated that DHA alleviate AKI by ameliorating oxidative stress and inflammatory damage, which may be related to its activation of the Nrf2 pathway and the regulation of macrophage polarisation, which lays the foundation for subsequent in-depth study of the specific mechanism of action.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.40
自引率
3.60%
发文量
935
审稿时长
53 days
期刊介绍: International Immunopharmacology is the primary vehicle for the publication of original research papers pertinent to the overlapping areas of immunology, pharmacology, cytokine biology, immunotherapy, immunopathology and immunotoxicology. Review articles that encompass these subjects are also welcome. The subject material appropriate for submission includes: • Clinical studies employing immunotherapy of any type including the use of: bacterial and chemical agents; thymic hormones, interferon, lymphokines, etc., in transplantation and diseases such as cancer, immunodeficiency, chronic infection and allergic, inflammatory or autoimmune disorders. • Studies on the mechanisms of action of these agents for specific parameters of immune competence as well as the overall clinical state. • Pre-clinical animal studies and in vitro studies on mechanisms of action with immunopotentiators, immunomodulators, immunoadjuvants and other pharmacological agents active on cells participating in immune or allergic responses. • Pharmacological compounds, microbial products and toxicological agents that affect the lymphoid system, and their mechanisms of action. • Agents that activate genes or modify transcription and translation within the immune response. • Substances activated, generated, or released through immunologic or related pathways that are pharmacologically active. • Production, function and regulation of cytokines and their receptors. • Classical pharmacological studies on the effects of chemokines and bioactive factors released during immunological reactions.
期刊最新文献
(-)-Epigallocatechin-3-gallate (EGCG) ameliorates ovalbumin-induced asthma by inhibiting inflammation via the TNF-α/TNF-R1/NLRP3 signaling pathway. Human leukocyte antigen DR alpha inhibits renal cell carcinoma progression by promoting the polarization of M2 macrophages to M1 via the NF-κB pathway. Macrophage polarization in sepsis: Emerging role and clinical application prospect. Unveiling the interplay between hepatocyte SATB1 and innate immunity in autoimmune hepatitis. Corrigendum to "mTOR aggravated CD4+ T cell pyroptosis by regulating the PPARγ-Nrf2 pathway in sepsis" [Int. Immunopharmacol. 140 (2024) 112822].
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1