Experimental study on vortex-induced vibrations of a circular cylinder elastically supported by realistic nonlinear springs: Vibration response

IF 3.4 2区 工程技术 Q1 ENGINEERING, MECHANICAL Journal of Fluids and Structures Pub Date : 2024-12-02 DOI:10.1016/j.jfluidstructs.2024.104233
Yawei Zhao , Zhimeng Zhang , Chunning Ji , Weilin Chen , Jiahang Lv , Hanghao Zhao
{"title":"Experimental study on vortex-induced vibrations of a circular cylinder elastically supported by realistic nonlinear springs: Vibration response","authors":"Yawei Zhao ,&nbsp;Zhimeng Zhang ,&nbsp;Chunning Ji ,&nbsp;Weilin Chen ,&nbsp;Jiahang Lv ,&nbsp;Hanghao Zhao","doi":"10.1016/j.jfluidstructs.2024.104233","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents an experimental investigation into the vortex-induced vibrations (VIV) of a single circular cylinder supported by various nonlinear springs. Unlike previous studies focused on systems satisfying the Duffing equation, this study explores a realistic scenario with nonlinear restoring forces derived from different magnet configurations. Experiments were conducted in a low-speed circulating water flume across a Reynolds number range of <em>Re</em> = 232-20930, a mass ratio (<em>m*</em>) ranging from 3.39 to 5.55, and a nonlinear strength coefficient (<em>λ</em>) from -1.48 to 1.70. The results demonstrated that predicted nonlinear VIV amplitudes using linear VIV data align well with experimental observations, validating the applicability of the prediction theory (Mackowski and Williamson, PoF, 2013) to general nonlinear systems. An equivalent reduced velocity (<em>U<sub>eq</sub></em>) was introduced to rescale vibration responses, effectively collapsing the envelopes for linear and hardening nonlinear systems, although shifts to higher <em>U<sub>eq</sub></em> values were observed for softening systems. A detailed analysis of the nonlinear coefficient's impact on VIV characteristics, including amplitude, frequency, phase lag, and displacement history, identified four distinct VIV response groups: softening, weak hardening, intermediate hardening, and strong hardening nonlinear VIV. A notable finding is the presence of two lock-in regions in nonlinear VIV responses, characterized by superharmonic synchronization, and multiple-value sections and gaps in vibration envelopes at specific transitions. These behaviors are attributed to variations in the natural frequency (<em>f<sub>n</sub></em>(<em>A*</em>)) with vibration amplitude. This study provides valuable insights into the complex dynamics of general nonlinear VIV, offering a foundation for future research and practical applications.</div></div>","PeriodicalId":54834,"journal":{"name":"Journal of Fluids and Structures","volume":"133 ","pages":"Article 104233"},"PeriodicalIF":3.4000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluids and Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0889974624001671","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents an experimental investigation into the vortex-induced vibrations (VIV) of a single circular cylinder supported by various nonlinear springs. Unlike previous studies focused on systems satisfying the Duffing equation, this study explores a realistic scenario with nonlinear restoring forces derived from different magnet configurations. Experiments were conducted in a low-speed circulating water flume across a Reynolds number range of Re = 232-20930, a mass ratio (m*) ranging from 3.39 to 5.55, and a nonlinear strength coefficient (λ) from -1.48 to 1.70. The results demonstrated that predicted nonlinear VIV amplitudes using linear VIV data align well with experimental observations, validating the applicability of the prediction theory (Mackowski and Williamson, PoF, 2013) to general nonlinear systems. An equivalent reduced velocity (Ueq) was introduced to rescale vibration responses, effectively collapsing the envelopes for linear and hardening nonlinear systems, although shifts to higher Ueq values were observed for softening systems. A detailed analysis of the nonlinear coefficient's impact on VIV characteristics, including amplitude, frequency, phase lag, and displacement history, identified four distinct VIV response groups: softening, weak hardening, intermediate hardening, and strong hardening nonlinear VIV. A notable finding is the presence of two lock-in regions in nonlinear VIV responses, characterized by superharmonic synchronization, and multiple-value sections and gaps in vibration envelopes at specific transitions. These behaviors are attributed to variations in the natural frequency (fn(A*)) with vibration amplitude. This study provides valuable insights into the complex dynamics of general nonlinear VIV, offering a foundation for future research and practical applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Fluids and Structures
Journal of Fluids and Structures 工程技术-工程:机械
CiteScore
6.90
自引率
8.30%
发文量
173
审稿时长
65 days
期刊介绍: The Journal of Fluids and Structures serves as a focal point and a forum for the exchange of ideas, for the many kinds of specialists and practitioners concerned with fluid–structure interactions and the dynamics of systems related thereto, in any field. One of its aims is to foster the cross–fertilization of ideas, methods and techniques in the various disciplines involved. The journal publishes papers that present original and significant contributions on all aspects of the mechanical interactions between fluids and solids, regardless of scale.
期刊最新文献
Experimental study on vortex-induced vibrations of a circular cylinder elastically supported by realistic nonlinear springs: Vibration response On the mechanism of frequency lock-in vibration of airfoils during pre-stall conditions VIV mechanisms of a non-streamlined bridge deck equipped with traffic barriers Nonlinear aeroelastic behavior of a two-dimensional heated panel by irregular shock reflection considering viscoelastic damping Estimation of wind force time-history using limited floor acceleration responses by modal analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1