Raza Moshwan , Xiao-Lei Shi , Min Zhang , Yicheng Yue , Wei-Di Liu , Meng Li , Lijun Wang , Daniel Liang , Zhi-Gang Chen
{"title":"Advances and challenges in hybrid photovoltaic-thermoelectric systems for renewable energy","authors":"Raza Moshwan , Xiao-Lei Shi , Min Zhang , Yicheng Yue , Wei-Di Liu , Meng Li , Lijun Wang , Daniel Liang , Zhi-Gang Chen","doi":"10.1016/j.apenergy.2024.125032","DOIUrl":null,"url":null,"abstract":"<div><div>Integrating thermoelectric generators (TEGs) with photovoltaic (PV) devices presents an effective strategy to enhance the power generation of PV cells, thus substantially contributing to the widespread adoption of solar energy. By harnessing both photon and heat energy from sunlight, this integration maximizes energy capture and improves overall system efficiency, thereby advancing the feasibility and scalability of solar energy generation. This article provides a timely review of the advances and challenges in hybrid photovoltaic-thermoelectric generator (PV-TEG) technology, covering fundamentals, the impact of thermal, contact, and load resistance on performance, various integration options (such as hybrid PV-TEG systems with spectral splitters, phase change materials, and thermal systems), thermal management, feasibility, economic and environmental aspects, and long-term efficiency improvements. Following a detailed analysis and review of extensive progress, PV-TEG systems demonstrate higher efficiency across diverse environmental conditions compared to standalone PV devices. Finally, we address constraints, propose potential remedies, and point out future directions in the field.</div></div>","PeriodicalId":246,"journal":{"name":"Applied Energy","volume":"380 ","pages":"Article 125032"},"PeriodicalIF":10.1000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306261924024164","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Integrating thermoelectric generators (TEGs) with photovoltaic (PV) devices presents an effective strategy to enhance the power generation of PV cells, thus substantially contributing to the widespread adoption of solar energy. By harnessing both photon and heat energy from sunlight, this integration maximizes energy capture and improves overall system efficiency, thereby advancing the feasibility and scalability of solar energy generation. This article provides a timely review of the advances and challenges in hybrid photovoltaic-thermoelectric generator (PV-TEG) technology, covering fundamentals, the impact of thermal, contact, and load resistance on performance, various integration options (such as hybrid PV-TEG systems with spectral splitters, phase change materials, and thermal systems), thermal management, feasibility, economic and environmental aspects, and long-term efficiency improvements. Following a detailed analysis and review of extensive progress, PV-TEG systems demonstrate higher efficiency across diverse environmental conditions compared to standalone PV devices. Finally, we address constraints, propose potential remedies, and point out future directions in the field.
期刊介绍:
Applied Energy serves as a platform for sharing innovations, research, development, and demonstrations in energy conversion, conservation, and sustainable energy systems. The journal covers topics such as optimal energy resource use, environmental pollutant mitigation, and energy process analysis. It welcomes original papers, review articles, technical notes, and letters to the editor. Authors are encouraged to submit manuscripts that bridge the gap between research, development, and implementation. The journal addresses a wide spectrum of topics, including fossil and renewable energy technologies, energy economics, and environmental impacts. Applied Energy also explores modeling and forecasting, conservation strategies, and the social and economic implications of energy policies, including climate change mitigation. It is complemented by the open-access journal Advances in Applied Energy.