Advances and challenges in hybrid photovoltaic-thermoelectric systems for renewable energy

IF 10.1 1区 工程技术 Q1 ENERGY & FUELS Applied Energy Pub Date : 2024-12-02 DOI:10.1016/j.apenergy.2024.125032
Raza Moshwan , Xiao-Lei Shi , Min Zhang , Yicheng Yue , Wei-Di Liu , Meng Li , Lijun Wang , Daniel Liang , Zhi-Gang Chen
{"title":"Advances and challenges in hybrid photovoltaic-thermoelectric systems for renewable energy","authors":"Raza Moshwan ,&nbsp;Xiao-Lei Shi ,&nbsp;Min Zhang ,&nbsp;Yicheng Yue ,&nbsp;Wei-Di Liu ,&nbsp;Meng Li ,&nbsp;Lijun Wang ,&nbsp;Daniel Liang ,&nbsp;Zhi-Gang Chen","doi":"10.1016/j.apenergy.2024.125032","DOIUrl":null,"url":null,"abstract":"<div><div>Integrating thermoelectric generators (TEGs) with photovoltaic (PV) devices presents an effective strategy to enhance the power generation of PV cells, thus substantially contributing to the widespread adoption of solar energy. By harnessing both photon and heat energy from sunlight, this integration maximizes energy capture and improves overall system efficiency, thereby advancing the feasibility and scalability of solar energy generation. This article provides a timely review of the advances and challenges in hybrid photovoltaic-thermoelectric generator (PV-TEG) technology, covering fundamentals, the impact of thermal, contact, and load resistance on performance, various integration options (such as hybrid PV-TEG systems with spectral splitters, phase change materials, and thermal systems), thermal management, feasibility, economic and environmental aspects, and long-term efficiency improvements. Following a detailed analysis and review of extensive progress, PV-TEG systems demonstrate higher efficiency across diverse environmental conditions compared to standalone PV devices. Finally, we address constraints, propose potential remedies, and point out future directions in the field.</div></div>","PeriodicalId":246,"journal":{"name":"Applied Energy","volume":"380 ","pages":"Article 125032"},"PeriodicalIF":10.1000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306261924024164","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Integrating thermoelectric generators (TEGs) with photovoltaic (PV) devices presents an effective strategy to enhance the power generation of PV cells, thus substantially contributing to the widespread adoption of solar energy. By harnessing both photon and heat energy from sunlight, this integration maximizes energy capture and improves overall system efficiency, thereby advancing the feasibility and scalability of solar energy generation. This article provides a timely review of the advances and challenges in hybrid photovoltaic-thermoelectric generator (PV-TEG) technology, covering fundamentals, the impact of thermal, contact, and load resistance on performance, various integration options (such as hybrid PV-TEG systems with spectral splitters, phase change materials, and thermal systems), thermal management, feasibility, economic and environmental aspects, and long-term efficiency improvements. Following a detailed analysis and review of extensive progress, PV-TEG systems demonstrate higher efficiency across diverse environmental conditions compared to standalone PV devices. Finally, we address constraints, propose potential remedies, and point out future directions in the field.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Energy
Applied Energy 工程技术-工程:化工
CiteScore
21.20
自引率
10.70%
发文量
1830
审稿时长
41 days
期刊介绍: Applied Energy serves as a platform for sharing innovations, research, development, and demonstrations in energy conversion, conservation, and sustainable energy systems. The journal covers topics such as optimal energy resource use, environmental pollutant mitigation, and energy process analysis. It welcomes original papers, review articles, technical notes, and letters to the editor. Authors are encouraged to submit manuscripts that bridge the gap between research, development, and implementation. The journal addresses a wide spectrum of topics, including fossil and renewable energy technologies, energy economics, and environmental impacts. Applied Energy also explores modeling and forecasting, conservation strategies, and the social and economic implications of energy policies, including climate change mitigation. It is complemented by the open-access journal Advances in Applied Energy.
期刊最新文献
Gearbox pump failure prognostics in offshore wind turbine by an integrated data-driven model Capacity fade-aware parameter identification of zero-dimensional model for vanadium redox flow batteries Can government green discourse-behavior congruence mitigate carbon emissions? A polynomial regression with response surface analysis Passive thermal management of CO2 Methanation using phase change material with high thermal conductivity Energy systems integration and sector coupling in future ports: A qualitative study of Norwegian ports
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1