Yulong Ni , Xiaoyu Li , He Zhang , Tiansi Wang , Kai Song , Chunbo Zhu , Jianing Xu
{"title":"Online identification of knee point in conventional and accelerated aging lithium-ion batteries using linear regression and Bayesian inference methods","authors":"Yulong Ni , Xiaoyu Li , He Zhang , Tiansi Wang , Kai Song , Chunbo Zhu , Jianing Xu","doi":"10.1016/j.apenergy.2025.125646","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate online knee point identification is crucial for predictive maintenance and secondary utilization of batteries. The “knee point” refers to the point in the battery capacity degradation curve where the degradation rate changes from linear to non-linear, marking a critical transition indicating the onset of accelerated capacity loss. However, challenges such as incomplete monitoring data, prevalent noise, difficulty in extracting characteristic parameters, and capacity regeneration phenomena hinder precise, real-time knee point detection. This study integrates physical mechanism modeling, signal processing techniques, and statistical inference to propose a robust, efficient solution for knee point identification. The proposed method employs feature extraction based on capacity loss mechanism models, denoising using variational mode decomposition (VMD), and a hybrid framework that combines linear regression with Bayesian inference. This dynamic model updates boundary limits in real-time, enabling highly accurate knee point identification across two positive materials, lithium cobalt oxide (LCO) and lithium iron phosphate (LFP), under various operating conditions. Comprehensive evaluations show that the proposed method achieves accuracies exceeding 94 % for conventional aging batteries and 92 % for accelerated aging batteries, surpassing existing methods. Additionally, the method demonstrates resilience to noise interference and capacity regeneration phenomena, maintaining high accuracy even under complex conditions. These results suggest that the proposed method has broad adaptability, making it a valuable tool for real-time battery health monitoring and providing a solid foundation for future research on battery aging diagnostics.</div></div>","PeriodicalId":246,"journal":{"name":"Applied Energy","volume":"388 ","pages":"Article 125646"},"PeriodicalIF":10.1000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306261925003769","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate online knee point identification is crucial for predictive maintenance and secondary utilization of batteries. The “knee point” refers to the point in the battery capacity degradation curve where the degradation rate changes from linear to non-linear, marking a critical transition indicating the onset of accelerated capacity loss. However, challenges such as incomplete monitoring data, prevalent noise, difficulty in extracting characteristic parameters, and capacity regeneration phenomena hinder precise, real-time knee point detection. This study integrates physical mechanism modeling, signal processing techniques, and statistical inference to propose a robust, efficient solution for knee point identification. The proposed method employs feature extraction based on capacity loss mechanism models, denoising using variational mode decomposition (VMD), and a hybrid framework that combines linear regression with Bayesian inference. This dynamic model updates boundary limits in real-time, enabling highly accurate knee point identification across two positive materials, lithium cobalt oxide (LCO) and lithium iron phosphate (LFP), under various operating conditions. Comprehensive evaluations show that the proposed method achieves accuracies exceeding 94 % for conventional aging batteries and 92 % for accelerated aging batteries, surpassing existing methods. Additionally, the method demonstrates resilience to noise interference and capacity regeneration phenomena, maintaining high accuracy even under complex conditions. These results suggest that the proposed method has broad adaptability, making it a valuable tool for real-time battery health monitoring and providing a solid foundation for future research on battery aging diagnostics.
期刊介绍:
Applied Energy serves as a platform for sharing innovations, research, development, and demonstrations in energy conversion, conservation, and sustainable energy systems. The journal covers topics such as optimal energy resource use, environmental pollutant mitigation, and energy process analysis. It welcomes original papers, review articles, technical notes, and letters to the editor. Authors are encouraged to submit manuscripts that bridge the gap between research, development, and implementation. The journal addresses a wide spectrum of topics, including fossil and renewable energy technologies, energy economics, and environmental impacts. Applied Energy also explores modeling and forecasting, conservation strategies, and the social and economic implications of energy policies, including climate change mitigation. It is complemented by the open-access journal Advances in Applied Energy.