Sodium alginate ameliorates health in freshwater fish through gut-liver axis modulation under high carbohydrate diets

IF 3.2 2区 农林科学 Q1 FISHERIES Aquaculture Reports Pub Date : 2024-12-02 DOI:10.1016/j.aqrep.2024.102538
Wenlu Zhu , Huilin Zhang , Haitao Pan , Hao Zeng , Wenjun Wang , Yunfeng Liu , Zirui Wang , Qiubai Zhou , Chuanqi Yu
{"title":"Sodium alginate ameliorates health in freshwater fish through gut-liver axis modulation under high carbohydrate diets","authors":"Wenlu Zhu ,&nbsp;Huilin Zhang ,&nbsp;Haitao Pan ,&nbsp;Hao Zeng ,&nbsp;Wenjun Wang ,&nbsp;Yunfeng Liu ,&nbsp;Zirui Wang ,&nbsp;Qiubai Zhou ,&nbsp;Chuanqi Yu","doi":"10.1016/j.aqrep.2024.102538","DOIUrl":null,"url":null,"abstract":"<div><div>High carbohydrate (HC) diets have become a conventional approach in modern aquaculture. However, this feeding strategy frequently compromises the health of high-value economic fish species, which might ultimately impair the farmers’ final profits. Our prior research indicated that <em>Saccharina japonica</em> efficiently reduces harm from HC diets, likely due to its sodium alginate (SA) content. In this study, <em>Monopterus albus</em> were randomly grouped into treatments: a normal diet (20 % carbohydrate, NC), a high carbohydrate diet (32 % carbohydrate, HC), and high carbohydrate diets supplemented with 0.5 % SA (LA). Then our outcomes evinced that LA improves various health-related parameters, including reduction of hepatosomatic index (HSI), serum glucose, triglycerides, and aminotransferase levels, as well as the decrease in hepatic lipid droplets, glycogen, and collagen fiber content. Our transcriptomic analysis on liver tissue showed that detoxification-related differentially expressed genes (DEGs) were less active in HC group than in NC group. In contrast, DEGs linked to fatty acid synthesis increased in LA group versus HC group. A combined analysis of metagenomics and the short-chain fatty acids (SCFAs) profile in the posterior intestinal digesta indicated that LA diets greatly increased concentration of acetic acid. This effect was accompanied by a concurrent reduction in the abundance of the species <em>Marinobacter guineae</em> relative to HC diets. Overall, sodium alginate has demonstrated a substantial enhancement in <em>Monopterus albus’</em> health by mitigating liver injury and ameliorating intestinal microbiota dysbiosis.</div></div>","PeriodicalId":8103,"journal":{"name":"Aquaculture Reports","volume":"40 ","pages":"Article 102538"},"PeriodicalIF":3.2000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquaculture Reports","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352513424006264","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FISHERIES","Score":null,"Total":0}
引用次数: 0

Abstract

High carbohydrate (HC) diets have become a conventional approach in modern aquaculture. However, this feeding strategy frequently compromises the health of high-value economic fish species, which might ultimately impair the farmers’ final profits. Our prior research indicated that Saccharina japonica efficiently reduces harm from HC diets, likely due to its sodium alginate (SA) content. In this study, Monopterus albus were randomly grouped into treatments: a normal diet (20 % carbohydrate, NC), a high carbohydrate diet (32 % carbohydrate, HC), and high carbohydrate diets supplemented with 0.5 % SA (LA). Then our outcomes evinced that LA improves various health-related parameters, including reduction of hepatosomatic index (HSI), serum glucose, triglycerides, and aminotransferase levels, as well as the decrease in hepatic lipid droplets, glycogen, and collagen fiber content. Our transcriptomic analysis on liver tissue showed that detoxification-related differentially expressed genes (DEGs) were less active in HC group than in NC group. In contrast, DEGs linked to fatty acid synthesis increased in LA group versus HC group. A combined analysis of metagenomics and the short-chain fatty acids (SCFAs) profile in the posterior intestinal digesta indicated that LA diets greatly increased concentration of acetic acid. This effect was accompanied by a concurrent reduction in the abundance of the species Marinobacter guineae relative to HC diets. Overall, sodium alginate has demonstrated a substantial enhancement in Monopterus albus’ health by mitigating liver injury and ameliorating intestinal microbiota dysbiosis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Aquaculture Reports
Aquaculture Reports Agricultural and Biological Sciences-Animal Science and Zoology
CiteScore
5.90
自引率
8.10%
发文量
469
审稿时长
77 days
期刊介绍: Aquaculture Reports will publish original research papers and reviews documenting outstanding science with a regional context and focus, answering the need for high quality information on novel species, systems and regions in emerging areas of aquaculture research and development, such as integrated multi-trophic aquaculture, urban aquaculture, ornamental, unfed aquaculture, offshore aquaculture and others. Papers having industry research as priority and encompassing product development research or current industry practice are encouraged.
期刊最新文献
Sodium alginate ameliorates health in freshwater fish through gut-liver axis modulation under high carbohydrate diets Electrogenic amino acid transport in the intestine of sea bream (Sparus aurata): From functional characterization to physiological effects of Lysophospholipids in aquafeeds Characterization of infectious salmon anaemia virus survival and infectivity in seawater Interactive effects of triploidy induction and culture densities on growth performance and stress, immune, and metabolic responses in juvenile rainbow trout (Oncorhynchus mykiss) Molecular cloning and expression dynamics of Atrogin-1 in muscle tissue of Russian sturgeon (Acipenser gueldenstaedtii) under high salt stress
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1