Biomimetic Dendritic Cell-Based Nanovaccines for Reprogramming the Immune Microenvironment to Boost Tumor Immunotherapy

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY ACS Nano Pub Date : 2024-12-03 DOI:10.1021/acsnano.4c09653
Weizhong Wang, Cheng Zou, Xiao Liu, Lei He, Zhengcong Cao, Maorong Zhu, Yuxin Wu, Xiaolin Liu, Jiying Ma, Yaoliang Wang, Yile Zhang, Kuo Zhang, Shuning Wang, Wangqian Zhang, Wei Liu, Wei Lin, Yingqi Zhang, Qingdong Guo, Meng Li, Jintao Gu
{"title":"Biomimetic Dendritic Cell-Based Nanovaccines for Reprogramming the Immune Microenvironment to Boost Tumor Immunotherapy","authors":"Weizhong Wang, Cheng Zou, Xiao Liu, Lei He, Zhengcong Cao, Maorong Zhu, Yuxin Wu, Xiaolin Liu, Jiying Ma, Yaoliang Wang, Yile Zhang, Kuo Zhang, Shuning Wang, Wangqian Zhang, Wei Liu, Wei Lin, Yingqi Zhang, Qingdong Guo, Meng Li, Jintao Gu","doi":"10.1021/acsnano.4c09653","DOIUrl":null,"url":null,"abstract":"Although dendritic cell (DC)-mediated immunotherapies are effective options for immunotherapy, traditional DC vaccines are hampered by a variety of drawbacks such as insufficient antigen delivery, weak lymph node homing, and the risk of living cell transfusion. To address the above-mentioned issues, we developed a personalized DC-mimicking nanovaccine (HybridDC) that enhances antigen presentation and elicits effective antitumor immunity. The biomimetic nanovaccine contains cell membranes derived from genetically engineered DCs, and several cellular components are simultaneously anchored onto these membranes, including CC-chemokine receptor 7 (CCR7), tumor-associated antigenic (TAA) peptide/tumor-derived exosome (TEX), and relevant costimulatory molecules. Compared with previous vaccines, the HybridDC vaccine showed an increased ability to target lymphoid tissues and reshape the immune landscape in the tumor milieu. HybridDC demonstrated significant therapeutic and prophylactic efficacy in poorly immunogenic, orthotopic models of glioma. Furthermore, the HybridDC vaccine potentiates the therapeutic efficacy of immune checkpoint blockade (ICB) therapy, providing a potential combination strategy to maximize the efficacy of ICB. Specifically, HybridDC can induce long-term protective immunity in memory T cells. Overall, the HybridDC vaccine is a promising platform for personalized cancer vaccines and may offer a combinational modality to improve current immunotherapy.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"261 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c09653","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Although dendritic cell (DC)-mediated immunotherapies are effective options for immunotherapy, traditional DC vaccines are hampered by a variety of drawbacks such as insufficient antigen delivery, weak lymph node homing, and the risk of living cell transfusion. To address the above-mentioned issues, we developed a personalized DC-mimicking nanovaccine (HybridDC) that enhances antigen presentation and elicits effective antitumor immunity. The biomimetic nanovaccine contains cell membranes derived from genetically engineered DCs, and several cellular components are simultaneously anchored onto these membranes, including CC-chemokine receptor 7 (CCR7), tumor-associated antigenic (TAA) peptide/tumor-derived exosome (TEX), and relevant costimulatory molecules. Compared with previous vaccines, the HybridDC vaccine showed an increased ability to target lymphoid tissues and reshape the immune landscape in the tumor milieu. HybridDC demonstrated significant therapeutic and prophylactic efficacy in poorly immunogenic, orthotopic models of glioma. Furthermore, the HybridDC vaccine potentiates the therapeutic efficacy of immune checkpoint blockade (ICB) therapy, providing a potential combination strategy to maximize the efficacy of ICB. Specifically, HybridDC can induce long-term protective immunity in memory T cells. Overall, the HybridDC vaccine is a promising platform for personalized cancer vaccines and may offer a combinational modality to improve current immunotherapy.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
期刊最新文献
Ion Migration and Redox Reactions in Axial Heterojunction Perovskite CsPb(Br1–xClx)3 Nanowire Devices Revealed by Operando Nanofocused X-ray Photoelectron Spectroscopy Efficient Circularly Polarized Electroluminescence Enabled by Low-Dimensional Bichiral Perovskite Nanocrystals Tailoring a Transition Metal Dual-Atom Catalyst via a Screening Descriptor in Li-S Batteries Interpretable Surrogate Learning for Electronic Material Generation. On-Surface Synthesis of Ni-Porphyrin-Doped Graphene Nanoribbons.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1