Semir El-Ahmar, Jakub Jagiełło, Maciej J. Szary, Wiktoria Reddig, Artur Dobrowolski, Rafał Prokopowicz, Maciej Ziemba, Tymoteusz Ciuk
{"title":"Fluence and thermal threshold for an effective self-healing in high-energy-neutron-irradiated Al2O3/QFS-graphene/6H-SiC(0001) system","authors":"Semir El-Ahmar, Jakub Jagiełło, Maciej J. Szary, Wiktoria Reddig, Artur Dobrowolski, Rafał Prokopowicz, Maciej Ziemba, Tymoteusz Ciuk","doi":"10.1016/j.apsusc.2024.161953","DOIUrl":null,"url":null,"abstract":"This article reveals a unique self-healing ability of the amorphous-aluminum-oxide-passivated p-type hydrogen-intercalated quasi-free-standing epitaxial Chemical Vapor Deposition graphene on semi-insulating vanadium-compensated nominally on-axis 6H-SiC(0001) system, exposed for 166 h to a destructive flux of 3.3 × 10<sup>11</sup> cm<sup>−2</sup>s<sup>−1</sup> of mostly fast-neutrons (1–2 MeV), resulting in an accumulated fluence of 2.0 × 10<sup>17</sup> cm<sup>−2</sup>. Post-irradiation room-temperature Hall effect characterization proves that the <em>a</em>-Al<sub>2</sub>O<sub>3</sub>/QFS-graphene/6H-SiC(0001) is n-type, which implies the loss of the quasi-free-standing character of graphene and likely damage to the SiC(0001)-saturating hydrogen layer. Micro-Raman spectroscopy suggests an average defect density in graphene of <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\">n</mi></mrow><mrow is=\"true\"><mi is=\"true\">D</mi></mrow></msub></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"1.74ex\" role=\"img\" style=\"vertical-align: -0.582ex;\" viewbox=\"0 -498.8 1286.3 749.2\" width=\"2.988ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-6E\"></use></g></g><g is=\"true\" transform=\"translate(600,-150)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMATHI-44\"></use></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\">n</mi></mrow><mrow is=\"true\"><mi is=\"true\">D</mi></mrow></msub></math></span></span><script type=\"math/mml\"><math><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\">n</mi></mrow><mrow is=\"true\"><mi is=\"true\">D</mi></mrow></msub></math></script></span> = 3.1 × 10<sup>10</sup> cm<sup>−2</sup> with an <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\">L</mi></mrow><mrow is=\"true\"><mi is=\"true\">D</mi></mrow></msub></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.317ex\" role=\"img\" style=\"vertical-align: -0.582ex;\" viewbox=\"0 -747.2 1367.3 997.6\" width=\"3.176ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-4C\"></use></g></g><g is=\"true\" transform=\"translate(681,-150)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMATHI-44\"></use></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\">L</mi></mrow><mrow is=\"true\"><mi is=\"true\">D</mi></mrow></msub></math></span></span><script type=\"math/mml\"><math><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\">L</mi></mrow><mrow is=\"true\"><mi is=\"true\">D</mi></mrow></msub></math></script></span> = 32-nm inter-defect distance. Yet, a thermal treatment up to 623 K eliminates defect-related Raman peaks and restores the original p-type conductance. At the same time, 623 K is not enough to recover the initial transport properties in a sample irradiated for 245 h with a total fluence of 2.0 × 10<sup>18</sup> cm<sup>−2</sup>. A Density Functional Theory model explains the self-healing phenomenon and restoration of the quasi-free-standing properties through thermally-activated lateral diffusion of the remaining population of hydrogen atoms and re-decoupling of the graphene sheet from the SiC(0001) surface. The thermal regime of 623 K fits perfectly into the operational limits of the <em>a</em>-Al<sub>2</sub>O<sub>3</sub>/QFS-graphene/6H-SiC(0001) system, defined as 300 K to 770 K. The finding constitutes a milestone for two-dimensional, graphene-based diagnostic and control systems designed for operation in extreme environments.","PeriodicalId":247,"journal":{"name":"Applied Surface Science","volume":"13 1","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.apsusc.2024.161953","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This article reveals a unique self-healing ability of the amorphous-aluminum-oxide-passivated p-type hydrogen-intercalated quasi-free-standing epitaxial Chemical Vapor Deposition graphene on semi-insulating vanadium-compensated nominally on-axis 6H-SiC(0001) system, exposed for 166 h to a destructive flux of 3.3 × 1011 cm−2s−1 of mostly fast-neutrons (1–2 MeV), resulting in an accumulated fluence of 2.0 × 1017 cm−2. Post-irradiation room-temperature Hall effect characterization proves that the a-Al2O3/QFS-graphene/6H-SiC(0001) is n-type, which implies the loss of the quasi-free-standing character of graphene and likely damage to the SiC(0001)-saturating hydrogen layer. Micro-Raman spectroscopy suggests an average defect density in graphene of = 3.1 × 1010 cm−2 with an = 32-nm inter-defect distance. Yet, a thermal treatment up to 623 K eliminates defect-related Raman peaks and restores the original p-type conductance. At the same time, 623 K is not enough to recover the initial transport properties in a sample irradiated for 245 h with a total fluence of 2.0 × 1018 cm−2. A Density Functional Theory model explains the self-healing phenomenon and restoration of the quasi-free-standing properties through thermally-activated lateral diffusion of the remaining population of hydrogen atoms and re-decoupling of the graphene sheet from the SiC(0001) surface. The thermal regime of 623 K fits perfectly into the operational limits of the a-Al2O3/QFS-graphene/6H-SiC(0001) system, defined as 300 K to 770 K. The finding constitutes a milestone for two-dimensional, graphene-based diagnostic and control systems designed for operation in extreme environments.
期刊介绍:
Applied Surface Science covers topics contributing to a better understanding of surfaces, interfaces, nanostructures and their applications. The journal is concerned with scientific research on the atomic and molecular level of material properties determined with specific surface analytical techniques and/or computational methods, as well as the processing of such structures.