Tumor-Associated Microglia Secrete Extracellular ATP to Support Glioblastoma Progression

IF 12.5 1区 医学 Q1 ONCOLOGY Cancer research Pub Date : 2024-12-02 DOI:10.1158/0008-5472.can-24-0018
Caren Yu-Ju Wu, Yiyun Chen, Ya-Jui Lin, Kuo-Chen Wei, Kwang-Yu Chang, Li-Ying Feng, Ko-Ting Chen, Gordon Li, Alexander Liang Ren, Ryan Takeo Nitta, Janet Yuling Wu, Kwang Bog Cho, Ayush Pant, John Choi, Crystal L. Mackall, Lily H. Kim, An-Chih Wu, Jian-Ying Chuang, Chiung-Yin Huang, Christopher M. Jackson, Pin-Yuan Chen, Michael Lim
{"title":"Tumor-Associated Microglia Secrete Extracellular ATP to Support Glioblastoma Progression","authors":"Caren Yu-Ju Wu, Yiyun Chen, Ya-Jui Lin, Kuo-Chen Wei, Kwang-Yu Chang, Li-Ying Feng, Ko-Ting Chen, Gordon Li, Alexander Liang Ren, Ryan Takeo Nitta, Janet Yuling Wu, Kwang Bog Cho, Ayush Pant, John Choi, Crystal L. Mackall, Lily H. Kim, An-Chih Wu, Jian-Ying Chuang, Chiung-Yin Huang, Christopher M. Jackson, Pin-Yuan Chen, Michael Lim","doi":"10.1158/0008-5472.can-24-0018","DOIUrl":null,"url":null,"abstract":"Glioblastoma (GBM) is a highly aggressive brain tumor with poor prognosis and high recurrence rates. The complex immune microenvironment of GBM is highly infiltrated by tumor-associated microglia and macrophages (TAM). TAMs are known to be heterogeneous in their functional and metabolic states and can transmit either protumoral or antitumoral signals to glioma cells. Here, we performed bulk RNA sequencing and single-cell RNA sequencing on samples from patients with GBM, which revealed increased ATP synthase expression and oxidative phosphorylation activity in TAMs located in the tumor core relative to the tumor periphery. Both in vitro and in vivo models displayed similar trends of augmented TAM mitochondrial activity, along with elevated mitochondrial fission, glucose uptake, mitochondrial membrane potential, and extracellular ATP (eATP) production by TAMs in the presence of GBM cells. Tumor-secreted factors, including GM-CSF, induced the increase in TAM eATP production. Elevated eATP in the GBM microenvironment promoted glioma growth and invasion by activating the P2X purinoceptor 7 (P2X7R) on glioma cells. Inhibition of the eATP–P2X7R axis attenuated tumor cell viability in vitro and reduced tumor size and prolonged survival in glioma-bearing mouse models. Overall, this study revealed elevated TAM-derived eATP in GBM and provided the basis for targeting the eATP–P2X7R signaling axis as a therapeutic strategy in GBM. Significance: Glioblastoma-mediated metabolic reprogramming in tumor-associated microglia increases ATP secretion that supports cancer cell proliferation and invasion by activating P2X7R, which can be inhibited to attenuate tumor growth.","PeriodicalId":9441,"journal":{"name":"Cancer research","volume":"78 1","pages":""},"PeriodicalIF":12.5000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/0008-5472.can-24-0018","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Glioblastoma (GBM) is a highly aggressive brain tumor with poor prognosis and high recurrence rates. The complex immune microenvironment of GBM is highly infiltrated by tumor-associated microglia and macrophages (TAM). TAMs are known to be heterogeneous in their functional and metabolic states and can transmit either protumoral or antitumoral signals to glioma cells. Here, we performed bulk RNA sequencing and single-cell RNA sequencing on samples from patients with GBM, which revealed increased ATP synthase expression and oxidative phosphorylation activity in TAMs located in the tumor core relative to the tumor periphery. Both in vitro and in vivo models displayed similar trends of augmented TAM mitochondrial activity, along with elevated mitochondrial fission, glucose uptake, mitochondrial membrane potential, and extracellular ATP (eATP) production by TAMs in the presence of GBM cells. Tumor-secreted factors, including GM-CSF, induced the increase in TAM eATP production. Elevated eATP in the GBM microenvironment promoted glioma growth and invasion by activating the P2X purinoceptor 7 (P2X7R) on glioma cells. Inhibition of the eATP–P2X7R axis attenuated tumor cell viability in vitro and reduced tumor size and prolonged survival in glioma-bearing mouse models. Overall, this study revealed elevated TAM-derived eATP in GBM and provided the basis for targeting the eATP–P2X7R signaling axis as a therapeutic strategy in GBM. Significance: Glioblastoma-mediated metabolic reprogramming in tumor-associated microglia increases ATP secretion that supports cancer cell proliferation and invasion by activating P2X7R, which can be inhibited to attenuate tumor growth.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
肿瘤相关的小胶质细胞分泌细胞外ATP支持胶质母细胞瘤的进展
胶质母细胞瘤(GBM)是一种高度侵袭性的脑肿瘤,预后差,复发率高。GBM复杂的免疫微环境高度浸润肿瘤相关的小胶质细胞和巨噬细胞(TAM)。已知tam在功能和代谢状态上是异质的,可以向胶质瘤细胞传递原肿瘤或抗肿瘤信号。在这里,我们对来自GBM患者的样本进行了大量RNA测序和单细胞RNA测序,结果显示,相对于肿瘤周围,位于肿瘤核心的tam中ATP合成酶的表达和氧化磷酸化活性增加。在体外和体内模型中,在GBM细胞存在的情况下,TAM线粒体活性增强,线粒体分裂、葡萄糖摄取、线粒体膜电位和细胞外ATP (eATP)产生均升高。肿瘤分泌因子,包括GM-CSF,诱导了TAM eATP生成的增加。GBM微环境中升高的eATP通过激活胶质瘤细胞上的P2X嘌呤受体7 (P2X7R)促进胶质瘤的生长和侵袭。在体外实验中,抑制etp - p2x7r轴可降低肿瘤细胞活力,降低肿瘤大小,延长胶质瘤小鼠模型的存活时间。总体而言,本研究揭示了tam衍生的eATP在GBM中的升高,并为靶向etp - p2x7r信号轴作为GBM的治疗策略提供了基础。意义:胶质母细胞瘤介导的肿瘤相关小胶质细胞代谢重编程通过激活P2X7R增加ATP分泌,支持癌细胞增殖和侵袭,抑制P2X7R可减弱肿瘤生长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cancer research
Cancer research 医学-肿瘤学
CiteScore
16.10
自引率
0.90%
发文量
7677
审稿时长
2.5 months
期刊介绍: Cancer Research, published by the American Association for Cancer Research (AACR), is a journal that focuses on impactful original studies, reviews, and opinion pieces relevant to the broad cancer research community. Manuscripts that present conceptual or technological advances leading to insights into cancer biology are particularly sought after. The journal also places emphasis on convergence science, which involves bridging multiple distinct areas of cancer research. With primary subsections including Cancer Biology, Cancer Immunology, Cancer Metabolism and Molecular Mechanisms, Translational Cancer Biology, Cancer Landscapes, and Convergence Science, Cancer Research has a comprehensive scope. It is published twice a month and has one volume per year, with a print ISSN of 0008-5472 and an online ISSN of 1538-7445. Cancer Research is abstracted and/or indexed in various databases and platforms, including BIOSIS Previews (R) Database, MEDLINE, Current Contents/Life Sciences, Current Contents/Clinical Medicine, Science Citation Index, Scopus, and Web of Science.
期刊最新文献
Leveraging artificial intelligence for neoantigen prediction Single Cell Expression Analysis of Ductal Carcinoma in Situ Identifies Complex Genotypic-Phenotypic Relationships Altering Epithelial Composition MICAL2 Promotes Pancreatic Cancer Growth and Metastasis. Comparative Single-Cell Transcriptomics of Human Neuroblastoma and Preclinical Models Reveals Conservation of an Adrenergic Cell State. Evolutionary Pressures Shape Undifferentiated Pleomorphic Sarcoma Development and Radiotherapy Response.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1