Gan Li, Ting Wang, Yating Xue, Huifang Li, Dahuan Liu
{"title":"Construction of low-vacancy hexagonal Prussian blue analogues for efficient rubidium recovery","authors":"Gan Li, Ting Wang, Yating Xue, Huifang Li, Dahuan Liu","doi":"10.1016/j.seppur.2024.130842","DOIUrl":null,"url":null,"abstract":"Prussian blue analogues (PBAs) are considered a promising adsorbent for rubidium recovery due to their high ion exchange capacity and selectivity. However, the development of PBAs-based rubidium adsorbents with excellent stability and adsorption capacity is still hindered by the inevitable CN ligand vacancies. Herein, a synthetic strategy is proposed to slow down crystal nucleation and promote the self-repair of crystal defects by incorporating N-doped porous carbon (NPC) as a solid modifier during the synthesis process. As a result, the vacancy content of Zn-PBA-NPC is significantly decreased and large size twinned crystals are produced, which remarkably improves the thermal and acid-base stability. Benefiting from the high content of K<sup>+</sup> in the low-vacancy Zn-PBA-NPC, it achieves a high adsorption amount of 199.1 mg/g and rapid adsorption kinetics of just 5 min for Rb<sup>+</sup>. In addition, it shows good selectivity in the presence of other alkali metal ions. This work not only prepares a high-performance adsorbent for efficient recovery of Rb<sup>+</sup>, but also facilitates insights into the design and construction of low-vacancy PBAs.","PeriodicalId":427,"journal":{"name":"Separation and Purification Technology","volume":"37 1","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Separation and Purification Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.seppur.2024.130842","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Prussian blue analogues (PBAs) are considered a promising adsorbent for rubidium recovery due to their high ion exchange capacity and selectivity. However, the development of PBAs-based rubidium adsorbents with excellent stability and adsorption capacity is still hindered by the inevitable CN ligand vacancies. Herein, a synthetic strategy is proposed to slow down crystal nucleation and promote the self-repair of crystal defects by incorporating N-doped porous carbon (NPC) as a solid modifier during the synthesis process. As a result, the vacancy content of Zn-PBA-NPC is significantly decreased and large size twinned crystals are produced, which remarkably improves the thermal and acid-base stability. Benefiting from the high content of K+ in the low-vacancy Zn-PBA-NPC, it achieves a high adsorption amount of 199.1 mg/g and rapid adsorption kinetics of just 5 min for Rb+. In addition, it shows good selectivity in the presence of other alkali metal ions. This work not only prepares a high-performance adsorbent for efficient recovery of Rb+, but also facilitates insights into the design and construction of low-vacancy PBAs.
期刊介绍:
Separation and Purification Technology is a premier journal committed to sharing innovative methods for separation and purification in chemical and environmental engineering, encompassing both homogeneous solutions and heterogeneous mixtures. Our scope includes the separation and/or purification of liquids, vapors, and gases, as well as carbon capture and separation techniques. However, it's important to note that methods solely intended for analytical purposes are not within the scope of the journal. Additionally, disciplines such as soil science, polymer science, and metallurgy fall outside the purview of Separation and Purification Technology. Join us in advancing the field of separation and purification methods for sustainable solutions in chemical and environmental engineering.