Jonathan G. Raybin, Ethan J. Dunsworth, Veronica Guo, Naomi S. Ginsberg
{"title":"Reversible Electron-Beam Patterning of Colloidal Nanoparticles at Fluid Interfaces","authors":"Jonathan G. Raybin, Ethan J. Dunsworth, Veronica Guo, Naomi S. Ginsberg","doi":"10.1021/acsami.4c14882","DOIUrl":null,"url":null,"abstract":"The directed self-assembly of colloidal nanoparticles (NPs) using external fields guides the formation of sophisticated hierarchical materials but becomes less effective with decreasing particle size. As an alternative, electron-beam-driven assembly offers a potential avenue for targeted nanoscale manipulation, yet remains poorly controlled due to the variety and complexity of beam interaction mechanisms. Here, we investigate the beam–particle interaction of silica NPs pinned to the fluid–vacuum interface of ionic liquid droplets. In these experiments, scanning electron microscopy of the droplet surface resolves NP trajectories over space and time while simultaneously driving their reorganization. With this platform, we demonstrate the ability to direct particle transport and create transient, reversible colloidal patterns on the droplet surface. By tuning the beam voltage, we achieve precise control over both the strength and sign of the beam–particle interaction, with low voltages repelling particles and high voltages attracting them. This response stems from the formation of well-defined solvent flow fields generated from trace radiolysis of the ionic liquid, as determined through statistical analysis of single-particle trajectories under varying solvent composition. Altogether, electron-beam-guided assembly introduces a versatile strategy for nanoscale colloidal manipulation, offering new possibilities for the design of dynamic, reconfigurable systems with applications in adaptive photonics and catalysis.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"46 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c14882","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The directed self-assembly of colloidal nanoparticles (NPs) using external fields guides the formation of sophisticated hierarchical materials but becomes less effective with decreasing particle size. As an alternative, electron-beam-driven assembly offers a potential avenue for targeted nanoscale manipulation, yet remains poorly controlled due to the variety and complexity of beam interaction mechanisms. Here, we investigate the beam–particle interaction of silica NPs pinned to the fluid–vacuum interface of ionic liquid droplets. In these experiments, scanning electron microscopy of the droplet surface resolves NP trajectories over space and time while simultaneously driving their reorganization. With this platform, we demonstrate the ability to direct particle transport and create transient, reversible colloidal patterns on the droplet surface. By tuning the beam voltage, we achieve precise control over both the strength and sign of the beam–particle interaction, with low voltages repelling particles and high voltages attracting them. This response stems from the formation of well-defined solvent flow fields generated from trace radiolysis of the ionic liquid, as determined through statistical analysis of single-particle trajectories under varying solvent composition. Altogether, electron-beam-guided assembly introduces a versatile strategy for nanoscale colloidal manipulation, offering new possibilities for the design of dynamic, reconfigurable systems with applications in adaptive photonics and catalysis.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.