Estimation of missing third-law standard entropy of apatite supergroup minerals using the optimized Volume-based Thermodynamics

IF 3.5 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Contributions to Mineralogy and Petrology Pub Date : 2024-12-03 DOI:10.1007/s00410-024-02193-2
Bartosz Puzio, Maciej Manecki
{"title":"Estimation of missing third-law standard entropy of apatite supergroup minerals using the optimized Volume-based Thermodynamics","authors":"Bartosz Puzio,&nbsp;Maciej Manecki","doi":"10.1007/s00410-024-02193-2","DOIUrl":null,"url":null,"abstract":"<div><p>The thermodynamic characterization of apatite minerals, critical for understanding geological processes and material applications, faces significant challenges due to the scarcity of experimental data, particularly standard entropy (<i>S°</i>) values. In this study, we address this gap by optimization of predictive method based on Volume-based Thermodynamics. In the proposed method, the optimization of the widely used Volume-based Thermodynamics is based on breaking down a single linear functional relationship of formula unit volume (<i>V</i><sub>m</sub>) with <i>S</i>° into a set of linear equations. The apatite supergroup splits into distinct subgroups (populations) formed by Me<sub>10</sub>(AO<sub>4</sub>)<sub>6</sub>X<sub>2</sub> with the same Me<sup>2+</sup> cations and tetrahedral AO<sub>4</sub><sup>3−</sup> anions but with different anions at the X position. Our approach leverages empirical correlations between <i>V</i><sub>m</sub> and <i>S°</i> within specific apatite subgroups. By analyzing the correlations within the subgroups, we established the system of precise linear relationships between <i>S</i>° and <i>V</i><sub>m</sub>, facilitating accurate <i>S°</i> predictions for a wide range of apatite compositions. The proposed approach represents a significant advancement over existing predictive methods offering unparalleled accuracy in estimating <i>S°</i> values for apatite minerals. Through rigorous regression analysis and validation against experimental data, we demonstrate the reliability and robustness of our predictive model across various apatite subgroups. Our findings provide crucial thermodynamic data for understudied apatite compositions and shed light on fundamental relationships between crystal structure and thermodynamic properties in apatite minerals. The precise estimation of <i>S°</i> values enables more accurate modeling of phase equilibria, reaction kinetics, and geological processes involving apatite minerals, facilitating advancements in diverse fields ranging from environmental geochemistry to material science.</p></div>","PeriodicalId":526,"journal":{"name":"Contributions to Mineralogy and Petrology","volume":"180 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00410-024-02193-2.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contributions to Mineralogy and Petrology","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s00410-024-02193-2","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The thermodynamic characterization of apatite minerals, critical for understanding geological processes and material applications, faces significant challenges due to the scarcity of experimental data, particularly standard entropy () values. In this study, we address this gap by optimization of predictive method based on Volume-based Thermodynamics. In the proposed method, the optimization of the widely used Volume-based Thermodynamics is based on breaking down a single linear functional relationship of formula unit volume (Vm) with S° into a set of linear equations. The apatite supergroup splits into distinct subgroups (populations) formed by Me10(AO4)6X2 with the same Me2+ cations and tetrahedral AO43− anions but with different anions at the X position. Our approach leverages empirical correlations between Vm and within specific apatite subgroups. By analyzing the correlations within the subgroups, we established the system of precise linear relationships between S° and Vm, facilitating accurate predictions for a wide range of apatite compositions. The proposed approach represents a significant advancement over existing predictive methods offering unparalleled accuracy in estimating values for apatite minerals. Through rigorous regression analysis and validation against experimental data, we demonstrate the reliability and robustness of our predictive model across various apatite subgroups. Our findings provide crucial thermodynamic data for understudied apatite compositions and shed light on fundamental relationships between crystal structure and thermodynamic properties in apatite minerals. The precise estimation of values enables more accurate modeling of phase equilibria, reaction kinetics, and geological processes involving apatite minerals, facilitating advancements in diverse fields ranging from environmental geochemistry to material science.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Contributions to Mineralogy and Petrology
Contributions to Mineralogy and Petrology 地学-地球化学与地球物理
CiteScore
6.50
自引率
5.70%
发文量
94
审稿时长
1.7 months
期刊介绍: Contributions to Mineralogy and Petrology is an international journal that accepts high quality research papers in the fields of igneous and metamorphic petrology, geochemistry and mineralogy. Topics of interest include: major element, trace element and isotope geochemistry, geochronology, experimental petrology, igneous and metamorphic petrology, mineralogy, major and trace element mineral chemistry and thermodynamic modeling of petrologic and geochemical processes.
期刊最新文献
Magmatic evolution and magma chamber conditions of the Alpehué tephra from Sollipulli Volcano, Andean Southern Volcanic Zone, Chile/Argentina Estimation of missing third-law standard entropy of apatite supergroup minerals using the optimized Volume-based Thermodynamics A 3-billion-year history of magmatism, metamorphism, and metasomatism recorded by granulite-facies xenoliths from central Montana, USA The chemical and Sm–Nd isotopic behaviour of accessory minerals in metasediments along the LP-HT Chugach Metamorphic Complex (Alaska) W-Fe isotopes argue against OIB-like basalts in Inner Mongolia originating from primordial peridotite mantle
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1