Komatiitic parental magmas of the Archean Ujaragssuit Nunât ultramafic body, SW Greenland, identified from spinel chemistry

IF 3.5 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Contributions to Mineralogy and Petrology Pub Date : 2025-02-21 DOI:10.1007/s00410-025-02208-6
I. Nishio, T. Morishita, P. Waterton, A. Tamura, K. Itano, S. H. Serre, J. L. Plesner, K. Takahashi, K. Tani, Y. Harigane, H. Sawada, K. Szilas
{"title":"Komatiitic parental magmas of the Archean Ujaragssuit Nunât ultramafic body, SW Greenland, identified from spinel chemistry","authors":"I. Nishio,&nbsp;T. Morishita,&nbsp;P. Waterton,&nbsp;A. Tamura,&nbsp;K. Itano,&nbsp;S. H. Serre,&nbsp;J. L. Plesner,&nbsp;K. Takahashi,&nbsp;K. Tani,&nbsp;Y. Harigane,&nbsp;H. Sawada,&nbsp;K. Szilas","doi":"10.1007/s00410-025-02208-6","DOIUrl":null,"url":null,"abstract":"<div><p>Archean and Proterozoic layered intrusions represent an important portion of the igneous rock archive and their parental magma composition may provide crucial insights into the Earth’s magmatic and geodynamic evolution. Both komatiitic and boninitic parental magmas have been suggested for several major Archean layered intrusions, which could imply different tectonic settings for their formation. We studied the ~ 3.2 Ga Ujaragssuit Nunât layered ultramafic body from southern West Greenland (Ujaragssuit ultramafic body), which contains some of Earth’s oldest chromitites. Spinel major and trace elements, and whole-rock platinum group element compositions in massive chromitites from the Ujaragssuit ultramafic body, largely preserve primary igneous compositions. In contrast, spinels from most silicate-dominated ultramafic rocks were altered by metamorphic and metasomatic events. We collated a large spinel dataset to investigate variations in their parental magma compositions and tectonic settings using multivariate statistical analysis. Both the massive chromitites from the Ujaragssuit ultramafic body and chromitites from other Archean and Proterozoic ultramafic layered intrusion show high Cr/(Cr + Al) and Ti/V ratios in spinel, and high whole-rock Ir and Ru contents, which are consistent with those of komatiitic spinel. The compositions of chromitites suggest that the parental magmas of the Ujaragssuit ultramafic body are komatiitic, implying that the formation of these layered intrusions was related to mantle plumes. Our recognition of a komatiitic ultramafic body in North Atlantic Craton, where no komatiite has previously been reported, suggests that komatiitic magmas were a common feature among cratons.</p></div>","PeriodicalId":526,"journal":{"name":"Contributions to Mineralogy and Petrology","volume":"180 3","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00410-025-02208-6.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contributions to Mineralogy and Petrology","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s00410-025-02208-6","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Archean and Proterozoic layered intrusions represent an important portion of the igneous rock archive and their parental magma composition may provide crucial insights into the Earth’s magmatic and geodynamic evolution. Both komatiitic and boninitic parental magmas have been suggested for several major Archean layered intrusions, which could imply different tectonic settings for their formation. We studied the ~ 3.2 Ga Ujaragssuit Nunât layered ultramafic body from southern West Greenland (Ujaragssuit ultramafic body), which contains some of Earth’s oldest chromitites. Spinel major and trace elements, and whole-rock platinum group element compositions in massive chromitites from the Ujaragssuit ultramafic body, largely preserve primary igneous compositions. In contrast, spinels from most silicate-dominated ultramafic rocks were altered by metamorphic and metasomatic events. We collated a large spinel dataset to investigate variations in their parental magma compositions and tectonic settings using multivariate statistical analysis. Both the massive chromitites from the Ujaragssuit ultramafic body and chromitites from other Archean and Proterozoic ultramafic layered intrusion show high Cr/(Cr + Al) and Ti/V ratios in spinel, and high whole-rock Ir and Ru contents, which are consistent with those of komatiitic spinel. The compositions of chromitites suggest that the parental magmas of the Ujaragssuit ultramafic body are komatiitic, implying that the formation of these layered intrusions was related to mantle plumes. Our recognition of a komatiitic ultramafic body in North Atlantic Craton, where no komatiite has previously been reported, suggests that komatiitic magmas were a common feature among cratons.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Contributions to Mineralogy and Petrology
Contributions to Mineralogy and Petrology 地学-地球化学与地球物理
CiteScore
6.50
自引率
5.70%
发文量
94
审稿时长
1.7 months
期刊介绍: Contributions to Mineralogy and Petrology is an international journal that accepts high quality research papers in the fields of igneous and metamorphic petrology, geochemistry and mineralogy. Topics of interest include: major element, trace element and isotope geochemistry, geochronology, experimental petrology, igneous and metamorphic petrology, mineralogy, major and trace element mineral chemistry and thermodynamic modeling of petrologic and geochemical processes.
期刊最新文献
Komatiitic parental magmas of the Archean Ujaragssuit Nunât ultramafic body, SW Greenland, identified from spinel chemistry The effect of high-pressure metasomatism on the boron isotope signature of subducted oceanic crust in the Raspas Complex (Ecuador) Geochemistry and Sr–Nd–Pb isotope geology of intraplate cenozoic basaltic volcanism of NE Brazil: remnant of an aborted mid-ocean ridge? Recycling of subduction-modified refractory mantle beneath the Marion Rise, Southwest Indian Ridge Correction to: Buoyancy-driven propagation of an isolated fluid-filled crack in rock: implication for fluid transport in metamorphism
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1