Early Prediction of the Remaining Useful Life of Lithium-Ion Cells Using Ensemble and Non-Ensemble Algorithms

Energy Storage Pub Date : 2025-02-04 DOI:10.1002/est2.70133
Femilda Josephin J.S., Ankit Sonthalia, Thiyagarajan Subramanian, Fethi Aloui, Dhowmya Bhatt, Edwin Geo Varuvel
{"title":"Early Prediction of the Remaining Useful Life of Lithium-Ion Cells Using Ensemble and Non-Ensemble Algorithms","authors":"Femilda Josephin J.S.,&nbsp;Ankit Sonthalia,&nbsp;Thiyagarajan Subramanian,&nbsp;Fethi Aloui,&nbsp;Dhowmya Bhatt,&nbsp;Edwin Geo Varuvel","doi":"10.1002/est2.70133","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Lithium-ion cells have become an important part of our daily lives. They are used to power mobile phones, laptops and more recently electric vehicles (both two- and four-wheelers). The chemical behavior of the cells is rather complex and non-linear. For reliable and sustainable use of the cells for practical applications, it is imperative to predict the precise pace at which their capacity will degrade. More importantly, the lifetime of the cells must be predicted at an early stage, which would accelerate development and design optimization of the cells. However, most of the existing methods cannot predict the lifetime at an early stage, since there is a weak correlation between the cell capacity and lifetime. In this study for accurate forecasting of the battery lifetime, the patterns of the parameters such as cell current, voltage, temperature, charging time, internal resistance, and capacity were examined during charging and discharging cycle of the cell. Twelve manually crafted features were prepared from these parameters. The dataset for the features was created using the raw data of the first 100 cycles of 124 cells. Six ensemble and non-ensemble machine learning algorithms, namely, multiple linear regression (MLR), decision tree, support vector machine (SVM), gradient boosting machine (GBM), light gradient boosting machine (LGBM), and extreme gradient boosting (XGBoost), were trained with the features for predicting the life-cycle of the cells. The <i>R</i><sup>2</sup> and root mean squared error (RMSE) values of MLR, decision tree, SVM, GBM, LGBM, and XGBoost were found to be 0.72 and 201, 0.83 and 155, 0.85 and 146, 0.92 and 100, 0.9 and 112, and 0.94 and 95, respectively. The prediction accuracy of lithium-ion cell life-time was found to be the best with the XGBoost algorithm. This shows that only first 100 cycles are required foraccurately predicting the number of cycles the lithium-ion cell can work for. Lastly, the results of the study were compared with the available studies in the literature. Three studies were chosen, and the RMSE of the method proposed in this study was found to be higher than the three studies by 43, 17, and 20. Therefore, the proposed method is a suitable option for predicting the lifetime of lithium-ion cells during the early stages of its development.</p>\n </div>","PeriodicalId":11765,"journal":{"name":"Energy Storage","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/est2.70133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Lithium-ion cells have become an important part of our daily lives. They are used to power mobile phones, laptops and more recently electric vehicles (both two- and four-wheelers). The chemical behavior of the cells is rather complex and non-linear. For reliable and sustainable use of the cells for practical applications, it is imperative to predict the precise pace at which their capacity will degrade. More importantly, the lifetime of the cells must be predicted at an early stage, which would accelerate development and design optimization of the cells. However, most of the existing methods cannot predict the lifetime at an early stage, since there is a weak correlation between the cell capacity and lifetime. In this study for accurate forecasting of the battery lifetime, the patterns of the parameters such as cell current, voltage, temperature, charging time, internal resistance, and capacity were examined during charging and discharging cycle of the cell. Twelve manually crafted features were prepared from these parameters. The dataset for the features was created using the raw data of the first 100 cycles of 124 cells. Six ensemble and non-ensemble machine learning algorithms, namely, multiple linear regression (MLR), decision tree, support vector machine (SVM), gradient boosting machine (GBM), light gradient boosting machine (LGBM), and extreme gradient boosting (XGBoost), were trained with the features for predicting the life-cycle of the cells. The R2 and root mean squared error (RMSE) values of MLR, decision tree, SVM, GBM, LGBM, and XGBoost were found to be 0.72 and 201, 0.83 and 155, 0.85 and 146, 0.92 and 100, 0.9 and 112, and 0.94 and 95, respectively. The prediction accuracy of lithium-ion cell life-time was found to be the best with the XGBoost algorithm. This shows that only first 100 cycles are required foraccurately predicting the number of cycles the lithium-ion cell can work for. Lastly, the results of the study were compared with the available studies in the literature. Three studies were chosen, and the RMSE of the method proposed in this study was found to be higher than the three studies by 43, 17, and 20. Therefore, the proposed method is a suitable option for predicting the lifetime of lithium-ion cells during the early stages of its development.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
0
期刊最新文献
Early Prediction of the Remaining Useful Life of Lithium-Ion Cells Using Ensemble and Non-Ensemble Algorithms Multi-Objective Optimization of a Spherical Thermal Storage Tank Using a Student Psychology-Based Approach Thermodynamic Parameters (Enthalpy and Entropy) of Hydrogen Storage in Ultrasound-Assisted Synthesized Selenium Decorated Fullerene Effect of Thickness on Performance of Thermal Management System for a Prismatic Lithium-Ion Battery Using Phase Change Material Microgrid Management of Hybrid Energy Sources Using a Hybrid Optimization Algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1