Establishing the Hydrological Controls on Water Surface Area Variations in Oxbow Lakes

IF 3.2 3区 地球科学 Q1 Environmental Science Hydrological Processes Pub Date : 2024-12-03 DOI:10.1002/hyp.70013
Joshua Ahmed
{"title":"Establishing the Hydrological Controls on Water Surface Area Variations in Oxbow Lakes","authors":"Joshua Ahmed","doi":"10.1002/hyp.70013","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Oxbow lakes are iconic fluvial landforms found in the floodplains of meandering rivers around the world. Their formation is associated with meander cutoff, a process that excises sections of river channel to optimise the downstream transmission of water and sediment. Overbank floods and conveyance through tie channels maintain some hydrological connectivity, but lakes are generally considered to passively infill until they are terrestrialised. Here, a suite of 64 lakes across two meandering rivers in the Bolivian Amazon Basin are used to demonstrate the hydrological dynamism of oxbow lakes by quantifying interannual variations in lake water surface area (WSA), using the modified Normalised Difference Water Index (mNDWI) on an archive of Landsat images, and evaluating the mechanisms controlling these changes using remotely sensed rainfall data and geospatial analysis. The majority of lakes (75%) decreased in size over the study period, while 25% increased in size. The results suggest that WSA variations are controlled by proximity to the active channel, with the magnitude of these variations being set by mechanisms of connectivity. Lakes connected by tie channels experienced WSA changes up to 3.9 times larger than lakes with no visible connection mechanisms. Incursion lakes displayed similar WSA changes to those with tie channels, while isolated lakes were found furthest from the mainstem and had the smallest range of WSAs. Chute lakes experienced a wider range of WSA change (−95% to +281%) and were more strongly controlled by mainstem proximity than neck lakes. Connectivity between the river and oxbow lakes is essential for governing lake hydrodynamics, and tie channels provide the critical conduit by which water can be transmitted deep into the floodplain.</p>\n </div>","PeriodicalId":13189,"journal":{"name":"Hydrological Processes","volume":"38 12","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrological Processes","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hyp.70013","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

Abstract

Oxbow lakes are iconic fluvial landforms found in the floodplains of meandering rivers around the world. Their formation is associated with meander cutoff, a process that excises sections of river channel to optimise the downstream transmission of water and sediment. Overbank floods and conveyance through tie channels maintain some hydrological connectivity, but lakes are generally considered to passively infill until they are terrestrialised. Here, a suite of 64 lakes across two meandering rivers in the Bolivian Amazon Basin are used to demonstrate the hydrological dynamism of oxbow lakes by quantifying interannual variations in lake water surface area (WSA), using the modified Normalised Difference Water Index (mNDWI) on an archive of Landsat images, and evaluating the mechanisms controlling these changes using remotely sensed rainfall data and geospatial analysis. The majority of lakes (75%) decreased in size over the study period, while 25% increased in size. The results suggest that WSA variations are controlled by proximity to the active channel, with the magnitude of these variations being set by mechanisms of connectivity. Lakes connected by tie channels experienced WSA changes up to 3.9 times larger than lakes with no visible connection mechanisms. Incursion lakes displayed similar WSA changes to those with tie channels, while isolated lakes were found furthest from the mainstem and had the smallest range of WSAs. Chute lakes experienced a wider range of WSA change (−95% to +281%) and were more strongly controlled by mainstem proximity than neck lakes. Connectivity between the river and oxbow lakes is essential for governing lake hydrodynamics, and tie channels provide the critical conduit by which water can be transmitted deep into the floodplain.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Hydrological Processes
Hydrological Processes 环境科学-水资源
CiteScore
6.00
自引率
12.50%
发文量
313
审稿时长
2-4 weeks
期刊介绍: Hydrological Processes is an international journal that publishes original scientific papers advancing understanding of the mechanisms underlying the movement and storage of water in the environment, and the interaction of water with geological, biogeochemical, atmospheric and ecological systems. Not all papers related to water resources are appropriate for submission to this journal; rather we seek papers that clearly articulate the role(s) of hydrological processes.
期刊最新文献
Features of the Velocity Distribution and Secondary Flow in a Compound Channel With Vegetation Karst Hydrologic Memory Supplements Streamflow During Dry Periods in Snow-Dominated, Mountainous Watersheds Developing a Lateral Terrestrial Water Flow Scheme to Improve the Representation of Land Surface Hydrological Processes in the Noah-MP of WRF-Hydro How Rains and Floods Become Groundwater: Understanding Recharge Pathways With Stable and Cosmogenic Isotopes Spatio-Temporal Variability of Hyporheic Exchange Processes Across a Stream Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1