Application of Artificial Neural Networks to Predict the Use of Mobile Learning by University Students

IF 4.3 Q1 PSYCHOLOGY, MULTIDISCIPLINARY Human Behavior and Emerging Technologies Pub Date : 2024-12-03 DOI:10.1155/hbe2/1518987
Alejandro Valencia-Arias, Julián Alberto Uribe-Gómez, Evelyn Flores-Siapo, Lucia Palacios-Moya, Ada Gallegos, Ezequiel Martínez Rojas
{"title":"Application of Artificial Neural Networks to Predict the Use of Mobile Learning by University Students","authors":"Alejandro Valencia-Arias,&nbsp;Julián Alberto Uribe-Gómez,&nbsp;Evelyn Flores-Siapo,&nbsp;Lucia Palacios-Moya,&nbsp;Ada Gallegos,&nbsp;Ezequiel Martínez Rojas","doi":"10.1155/hbe2/1518987","DOIUrl":null,"url":null,"abstract":"<p>The use of mobile devices has become pervasive in recent times, constituting an essential component of daily life. Mobile phones have enabled certain minorities to attain access to the Internet, news, and knowledge, thereby indicating their potential to reduce the digital divide experienced by ethnic groups and those from low socioeconomic backgrounds. This phenomenon has generated academic interest in the utilization of mobile devices to facilitate learning, as these devices merge the lines between computing and communications, giving access to both. The objective of this study is to ascertain the inclination of Peruvian higher education students to use mobile devices for learning. This will be achieved through the use of an anticipated model based on artificial neural networks (ANNs). ANNs are supervised machine learning techniques that imitate the organization and operation of the human brain to process data and render decisions. ANNs are computer systems that can learn from observation and experience, much like the human brain, and can subsequently use the acquired knowledge to recognize patterns and make predictions. The objective of this study is to assess the intention of Peruvian tertiary education students to employ mobile devices for learning by creating a predictive model that relies on ANNs. Among the main findings, it is evident that the ANN with optimal performance has 10 neurons within its hidden layer. Factors such as experience with virtual subjects, frequency of use, and coverage are crucial for the two intention variables. This enables directed prediction efforts towards the most significant variables identified by their importance.</p>","PeriodicalId":36408,"journal":{"name":"Human Behavior and Emerging Technologies","volume":"2024 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/hbe2/1518987","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Behavior and Emerging Technologies","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/hbe2/1518987","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The use of mobile devices has become pervasive in recent times, constituting an essential component of daily life. Mobile phones have enabled certain minorities to attain access to the Internet, news, and knowledge, thereby indicating their potential to reduce the digital divide experienced by ethnic groups and those from low socioeconomic backgrounds. This phenomenon has generated academic interest in the utilization of mobile devices to facilitate learning, as these devices merge the lines between computing and communications, giving access to both. The objective of this study is to ascertain the inclination of Peruvian higher education students to use mobile devices for learning. This will be achieved through the use of an anticipated model based on artificial neural networks (ANNs). ANNs are supervised machine learning techniques that imitate the organization and operation of the human brain to process data and render decisions. ANNs are computer systems that can learn from observation and experience, much like the human brain, and can subsequently use the acquired knowledge to recognize patterns and make predictions. The objective of this study is to assess the intention of Peruvian tertiary education students to employ mobile devices for learning by creating a predictive model that relies on ANNs. Among the main findings, it is evident that the ANN with optimal performance has 10 neurons within its hidden layer. Factors such as experience with virtual subjects, frequency of use, and coverage are crucial for the two intention variables. This enables directed prediction efforts towards the most significant variables identified by their importance.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Human Behavior and Emerging Technologies
Human Behavior and Emerging Technologies Social Sciences-Social Sciences (all)
CiteScore
17.20
自引率
8.70%
发文量
73
期刊介绍: Human Behavior and Emerging Technologies is an interdisciplinary journal dedicated to publishing high-impact research that enhances understanding of the complex interactions between diverse human behavior and emerging digital technologies.
期刊最新文献
Antecedents of the Intention to Use Implantable Technologies for Nonmedical Purposes: A Mixed-Method Evaluation Applying ChatGPT and AI-Powered Tools to Accelerate Evidence Reviews Application of Artificial Neural Networks to Predict the Use of Mobile Learning by University Students The Changing Importance of Competence Generationally: Developing Trust, Online and Offline Perceived Value and Purchase Influence of YouTube Beauty Vlog Content Amongst Generation Y Female Consumers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1