Kinase-Bench: Comprehensive Benchmarking Tools and Guidance for Achieving Selectivity in Kinase Drug Discovery.

IF 5.6 2区 化学 Q1 CHEMISTRY, MEDICINAL Journal of Chemical Information and Modeling Pub Date : 2024-12-02 DOI:10.1021/acs.jcim.4c01830
Tian-Hua Wei, Shuang-Shuang Zhou, Xiao-Long Jing, Jia-Chuan Liu, Meng Sun, Zong-Hao Zhao, Qing-Qing Li, Zi-Xuan Wang, Jin Yang, Yun Zhou, Xue Wang, Cheng-Xiao Ling, Ning Ding, Xin Xue, Yan-Cheng Yu, Xiao-Long Wang, Xiao-Ying Yin, Shan-Liang Sun, Peng Cao, Nian-Guang Li, Zhi-Hao Shi
{"title":"Kinase-Bench: Comprehensive Benchmarking Tools and Guidance for Achieving Selectivity in Kinase Drug Discovery.","authors":"Tian-Hua Wei, Shuang-Shuang Zhou, Xiao-Long Jing, Jia-Chuan Liu, Meng Sun, Zong-Hao Zhao, Qing-Qing Li, Zi-Xuan Wang, Jin Yang, Yun Zhou, Xue Wang, Cheng-Xiao Ling, Ning Ding, Xin Xue, Yan-Cheng Yu, Xiao-Long Wang, Xiao-Ying Yin, Shan-Liang Sun, Peng Cao, Nian-Guang Li, Zhi-Hao Shi","doi":"10.1021/acs.jcim.4c01830","DOIUrl":null,"url":null,"abstract":"<p><p>Developing selective kinase inhibitors remains a formidable challenge in drug discovery because of the highly conserved structural information on adenosine triphosphate (ATP) binding sites across the kinase family. Tailoring docking protocols to identify promising kinase inhibitor candidates for optimization has long been a substantial obstacle to drug discovery. Therefore, we introduced \"Kinase-Bench,\" a pioneering benchmark suite designed for an advanced virtual screen, to improve the selectivity and efficacy of kinase inhibitors. Our comprehensive data set includes 6875 selective ligands and 422,799 decoys for 75 kinases, using extensive bioactivity and structural data from the ChEMBL database and decoys generated by the Directory of Useful Decoys-Enhanced version. Our benchmarking sets and retrospective case studies were designed to provide useful guidance in discovering selective kinase inhibitors. We employed a Glide High-Throughput Virtual Screen and Standard Precision complemented by three scoring functions and customized protein-ligand interaction filters that target specific kinase residue interactions. These innovations were successfully implemented in our virtual screen efforts targeting JAK1 inhibitors, achieving selectivity against its family member, TYK2. Consequently, we identified novel potential hits: Compound <b>2</b> (JAK1 IC<sub>50</sub>: 980.5 nM, TYK2 IC<sub>50</sub>: 4.5 μM) and the approved pan-AKT inhibitor Capivasertib (JAK1 IC<sub>50</sub>: 275.9 nM, TYK2 IC<sub>50</sub>: 10.9 μM). Using the Kinase-Bench protocol, both compounds demonstrated substantial JAK1 selectivity, making them strong candidates for further investigation. Our pharmaceutical results underscore the utility of tailored virtual screen protocols in identifying selective kinase inhibitors with substantial implications for rational drug design. Kinase-Bench offers a robust toolset for selective kinase drug discovery with the potential to effectively guide future therapeutic strategies effectively.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":" ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jcim.4c01830","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Developing selective kinase inhibitors remains a formidable challenge in drug discovery because of the highly conserved structural information on adenosine triphosphate (ATP) binding sites across the kinase family. Tailoring docking protocols to identify promising kinase inhibitor candidates for optimization has long been a substantial obstacle to drug discovery. Therefore, we introduced "Kinase-Bench," a pioneering benchmark suite designed for an advanced virtual screen, to improve the selectivity and efficacy of kinase inhibitors. Our comprehensive data set includes 6875 selective ligands and 422,799 decoys for 75 kinases, using extensive bioactivity and structural data from the ChEMBL database and decoys generated by the Directory of Useful Decoys-Enhanced version. Our benchmarking sets and retrospective case studies were designed to provide useful guidance in discovering selective kinase inhibitors. We employed a Glide High-Throughput Virtual Screen and Standard Precision complemented by three scoring functions and customized protein-ligand interaction filters that target specific kinase residue interactions. These innovations were successfully implemented in our virtual screen efforts targeting JAK1 inhibitors, achieving selectivity against its family member, TYK2. Consequently, we identified novel potential hits: Compound 2 (JAK1 IC50: 980.5 nM, TYK2 IC50: 4.5 μM) and the approved pan-AKT inhibitor Capivasertib (JAK1 IC50: 275.9 nM, TYK2 IC50: 10.9 μM). Using the Kinase-Bench protocol, both compounds demonstrated substantial JAK1 selectivity, making them strong candidates for further investigation. Our pharmaceutical results underscore the utility of tailored virtual screen protocols in identifying selective kinase inhibitors with substantial implications for rational drug design. Kinase-Bench offers a robust toolset for selective kinase drug discovery with the potential to effectively guide future therapeutic strategies effectively.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.80
自引率
10.70%
发文量
529
审稿时长
1.4 months
期刊介绍: The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery. Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field. As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.
期刊最新文献
Essential Considerations for Free Energy Calculations of RNA-Small Molecule Complexes: Lessons from the Theophylline-Binding RNA Aptamer. MGT: Machine Learning Accelerates Performance Prediction of Alloy Catalytic Materials. EvaluationMaster: A GUI Tool for Structure-Based Virtual Screening Evaluation Analysis and Decision-Making Support. DiffInt: A Diffusion Model for Structure-Based Drug Design with Explicit Hydrogen Bond Interaction Guidance. Ligand Binding and Functional Effect of Novel Bicyclic α5 GABAA Receptor Negative Allosteric Modulators.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1