Ali Rasouli, Frank C Pickard, Sreyoshi Sur, Alan Grossfield, Mehtap Işık Bennett
{"title":"Essential Considerations for Free Energy Calculations of RNA-Small Molecule Complexes: Lessons from the Theophylline-Binding RNA Aptamer.","authors":"Ali Rasouli, Frank C Pickard, Sreyoshi Sur, Alan Grossfield, Mehtap Işık Bennett","doi":"10.1021/acs.jcim.4c01505","DOIUrl":null,"url":null,"abstract":"<p><p>Alchemical free energy calculations are widely used to predict the binding affinity of small molecule ligands to protein targets; however, the application of these methods to RNA targets has not been deeply explored. We systematically investigated how modeling decisions affect the performance of absolute binding free energy calculations for a relatively simple RNA model system: theophylline-binding RNA aptamer with theophylline and five analogs. The goal of this investigation was 2-fold: (1) understanding the performance levels we can expect from absolute free energy calculations for a simple RNA complex and (2) learning about practical modeling considerations that impact the success of RNA-binding predictions, which may be different from the best practices established for protein targets. We learned that magnesium ion (Mg<sup>2+</sup>) placement is a critical decision that impacts affinity predictions. When information regarding Mg<sup>2+</sup> positions is lacking, implementing RNA backbone restraints is an alternative way of stabilizing the RNA structure that recapitulates prediction accuracy. Since mistakes in Mg<sup>2+</sup> placement can be detrimental, omitting magnesium ions entirely and using RNA backbone restraints are attractive as a risk-mitigating approach. We found that predictions are sensitive to modeling experimental buffer conditions correctly, including salt type and ionic strength. We explored the effects of sampling in the alchemical protocol, choice of the ligand force field (GAFF2/OpenFF Sage), and water model (TIP3P/OPC) on predictions, which allowed us to give practical advice for the application of free energy methods to RNA targets. By capturing experimental buffer conditions and implementing RNA backbone restraints, we were able to compute binding affinities accurately (mean absolute error (MAE) = 2.2 kcal/mol, Pearson's correlation coefficient = 0.9, Kendall's τ = 0.7). We believe there is much to learn about how to apply free energy calculations for RNA targets and how to enhance their performance in prospective predictions. This study is an important first step for learning best practices and special considerations for RNA-ligand free energy calculations. Future studies will consider increasingly complicated ligands and diverse RNA systems and help the development of general protocols for therapeutically relevant RNA targets.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":" ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jcim.4c01505","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Alchemical free energy calculations are widely used to predict the binding affinity of small molecule ligands to protein targets; however, the application of these methods to RNA targets has not been deeply explored. We systematically investigated how modeling decisions affect the performance of absolute binding free energy calculations for a relatively simple RNA model system: theophylline-binding RNA aptamer with theophylline and five analogs. The goal of this investigation was 2-fold: (1) understanding the performance levels we can expect from absolute free energy calculations for a simple RNA complex and (2) learning about practical modeling considerations that impact the success of RNA-binding predictions, which may be different from the best practices established for protein targets. We learned that magnesium ion (Mg2+) placement is a critical decision that impacts affinity predictions. When information regarding Mg2+ positions is lacking, implementing RNA backbone restraints is an alternative way of stabilizing the RNA structure that recapitulates prediction accuracy. Since mistakes in Mg2+ placement can be detrimental, omitting magnesium ions entirely and using RNA backbone restraints are attractive as a risk-mitigating approach. We found that predictions are sensitive to modeling experimental buffer conditions correctly, including salt type and ionic strength. We explored the effects of sampling in the alchemical protocol, choice of the ligand force field (GAFF2/OpenFF Sage), and water model (TIP3P/OPC) on predictions, which allowed us to give practical advice for the application of free energy methods to RNA targets. By capturing experimental buffer conditions and implementing RNA backbone restraints, we were able to compute binding affinities accurately (mean absolute error (MAE) = 2.2 kcal/mol, Pearson's correlation coefficient = 0.9, Kendall's τ = 0.7). We believe there is much to learn about how to apply free energy calculations for RNA targets and how to enhance their performance in prospective predictions. This study is an important first step for learning best practices and special considerations for RNA-ligand free energy calculations. Future studies will consider increasingly complicated ligands and diverse RNA systems and help the development of general protocols for therapeutically relevant RNA targets.
期刊介绍:
The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery.
Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field.
As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.