{"title":"Martignac: Computational Workflows for Reproducible, Traceable, and Composable Coarse-Grained Martini Simulations.","authors":"Tristan Bereau, Luis J Walter, Joseph F Rudzinski","doi":"10.1021/acs.jcim.4c01754","DOIUrl":null,"url":null,"abstract":"<p><p>Despite their wide use and far-reaching implications, molecular dynamics (MD) simulations suffer from a lack of both traceability and reproducibility. We introduce Martignac: computational workflows for the coarse-grained (CG) Martini force field. Martignac describes Martini CG MD simulations as an acyclic directed graph, providing the entire history of a simulation─from system preparation to property calculations. Martignac connects to NOMAD, such that all simulation data generated are automatically normalized and stored according to the FAIR principles. We present several prototypical Martini workflows, including system generation of simple liquids and bilayers, as well as free-energy calculations for solute solvation in homogeneous liquids and drug permeation in lipid bilayers. By connecting to the NOMAD database to automatically pull existing simulations and push any new simulation generated, Martignac contributes to improving the sustainability and reproducibility of molecular simulations.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":" ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jcim.4c01754","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Despite their wide use and far-reaching implications, molecular dynamics (MD) simulations suffer from a lack of both traceability and reproducibility. We introduce Martignac: computational workflows for the coarse-grained (CG) Martini force field. Martignac describes Martini CG MD simulations as an acyclic directed graph, providing the entire history of a simulation─from system preparation to property calculations. Martignac connects to NOMAD, such that all simulation data generated are automatically normalized and stored according to the FAIR principles. We present several prototypical Martini workflows, including system generation of simple liquids and bilayers, as well as free-energy calculations for solute solvation in homogeneous liquids and drug permeation in lipid bilayers. By connecting to the NOMAD database to automatically pull existing simulations and push any new simulation generated, Martignac contributes to improving the sustainability and reproducibility of molecular simulations.
期刊介绍:
The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery.
Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field.
As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.