{"title":"Design of Recyclable Plastics with Machine Learning and Genetic Algorithm.","authors":"Chureh Atasi, Joseph Kern, Rampi Ramprasad","doi":"10.1021/acs.jcim.4c01530","DOIUrl":null,"url":null,"abstract":"<p><p>We present an artificial intelligence-guided approach to design durable and chemically recyclable ring-opening polymerization (ROP) class polymers. This approach employs a genetic algorithm (GA) that designs new monomers and then utilizes virtual forward synthesis (VFS) to generate almost a million ROP polymers. Machine learning models to predict thermal, thermodynamic, and mechanical properties─crucial for application-specific performance and recyclability─are used to guide the GA toward optimal polymers. We present potential substitute polymers for polystyrene (PS) that achieve all property targets with low estimated synthetic complexity.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":" ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jcim.4c01530","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
We present an artificial intelligence-guided approach to design durable and chemically recyclable ring-opening polymerization (ROP) class polymers. This approach employs a genetic algorithm (GA) that designs new monomers and then utilizes virtual forward synthesis (VFS) to generate almost a million ROP polymers. Machine learning models to predict thermal, thermodynamic, and mechanical properties─crucial for application-specific performance and recyclability─are used to guide the GA toward optimal polymers. We present potential substitute polymers for polystyrene (PS) that achieve all property targets with low estimated synthetic complexity.
期刊介绍:
The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery.
Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field.
As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.