Erik Chovancek, Sylvain Poque, Engin Bayram, Emren Borhan, Martina Jokel, Iida-Maria Rantanen, Berat Z Haznedaroglu, Kristiina Himanen, Sema Sirin, Yagut Allahverdiyeva
{"title":"Stepwise processing of Chlorella sorokiniana confers plant biostimulant that reduces mineral fertilizer requirements.","authors":"Erik Chovancek, Sylvain Poque, Engin Bayram, Emren Borhan, Martina Jokel, Iida-Maria Rantanen, Berat Z Haznedaroglu, Kristiina Himanen, Sema Sirin, Yagut Allahverdiyeva","doi":"10.1016/j.biortech.2024.131923","DOIUrl":null,"url":null,"abstract":"<p><p>We developed a stepwise method to transform Chlorella sorokiniana microalgal biomass into a potent biostimulant. The method, including maceration, high-pressure homogenization, and enzymatic hydrolysis, preserves the bioactive properties of the biomass as a biostimulant while minimizing plant inhibitory effects. Fractions were characterized individually, and optimal concentrations were determined using a rapid Arabidopsis root assay. A blend of optimal concentrations of fractions was identified as the most stimulating extract, increasing the root elongation by 25 %. When applied to tomato plants and monitored using high-throughput plant phenotyping, the blend displayed a 25 % reduction in mineral fertilizer use. Metabolomic analysis of the tomato plants showed significantly enhanced carbon and nitrogen metabolism in the leaves. Our findings indicate that the stepwise processing not only produces an effective biostimulant but also generates substantial residual biomass for a potential multiproduct biorefinery approach that can improve the overall techno-economic outlook.</p>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":" ","pages":"131923"},"PeriodicalIF":9.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresource Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.biortech.2024.131923","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
We developed a stepwise method to transform Chlorella sorokiniana microalgal biomass into a potent biostimulant. The method, including maceration, high-pressure homogenization, and enzymatic hydrolysis, preserves the bioactive properties of the biomass as a biostimulant while minimizing plant inhibitory effects. Fractions were characterized individually, and optimal concentrations were determined using a rapid Arabidopsis root assay. A blend of optimal concentrations of fractions was identified as the most stimulating extract, increasing the root elongation by 25 %. When applied to tomato plants and monitored using high-throughput plant phenotyping, the blend displayed a 25 % reduction in mineral fertilizer use. Metabolomic analysis of the tomato plants showed significantly enhanced carbon and nitrogen metabolism in the leaves. Our findings indicate that the stepwise processing not only produces an effective biostimulant but also generates substantial residual biomass for a potential multiproduct biorefinery approach that can improve the overall techno-economic outlook.
期刊介绍:
Bioresource Technology publishes original articles, review articles, case studies, and short communications covering the fundamentals, applications, and management of bioresource technology. The journal seeks to advance and disseminate knowledge across various areas related to biomass, biological waste treatment, bioenergy, biotransformations, bioresource systems analysis, and associated conversion or production technologies.
Topics include:
• Biofuels: liquid and gaseous biofuels production, modeling and economics
• Bioprocesses and bioproducts: biocatalysis and fermentations
• Biomass and feedstocks utilization: bioconversion of agro-industrial residues
• Environmental protection: biological waste treatment
• Thermochemical conversion of biomass: combustion, pyrolysis, gasification, catalysis.