Current advances in the structure-activity relationship (SAR) analysis of the old/new 18-kDa translocator protein ligands.

IF 3.9 2区 化学 Q2 CHEMISTRY, APPLIED Molecular Diversity Pub Date : 2024-12-04 DOI:10.1007/s11030-024-10963-0
Priya Singh, Vijay Kumar Singh, Chandraprakash Gond, Deepika Singh, Anjani Kumar Tiwari
{"title":"Current advances in the structure-activity relationship (SAR) analysis of the old/new 18-kDa translocator protein ligands.","authors":"Priya Singh, Vijay Kumar Singh, Chandraprakash Gond, Deepika Singh, Anjani Kumar Tiwari","doi":"10.1007/s11030-024-10963-0","DOIUrl":null,"url":null,"abstract":"<p><p>The translocator protein 18 kDa (TSPO) is a crucial external mitochondrial protein involved in cholesterol translocation, which is essential for steroid production. As a primary marker of neuroinflammation, TSPO has been implicated in the development and progression of various neurodegenerative and neuropsychiatric disorders. This review highlights the structural diversity of TSPO ligands, many of which have undergone modifications from selective central benzodiazepine receptor (CBR) ligands to enhance their affinity for TSPO. The paper discusses the significant advancements in the design of these ligands, emphasizing their binding efficacy and specificity. Additionally, it provides an update on the progress of several TSPO ligands that have advanced to clinical trials. The review aims to elucidate the structure-activity relationships (SAR) that govern the interaction between TSPO and its ligands, thereby offering insights into the development of new therapeutic agents targeting TSPO for the treatment of neuroinflammatory conditions. Overall, this work provided an update on previous finding and serves as a valuable resource for researchers in the field.</p>","PeriodicalId":708,"journal":{"name":"Molecular Diversity","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Diversity","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11030-024-10963-0","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The translocator protein 18 kDa (TSPO) is a crucial external mitochondrial protein involved in cholesterol translocation, which is essential for steroid production. As a primary marker of neuroinflammation, TSPO has been implicated in the development and progression of various neurodegenerative and neuropsychiatric disorders. This review highlights the structural diversity of TSPO ligands, many of which have undergone modifications from selective central benzodiazepine receptor (CBR) ligands to enhance their affinity for TSPO. The paper discusses the significant advancements in the design of these ligands, emphasizing their binding efficacy and specificity. Additionally, it provides an update on the progress of several TSPO ligands that have advanced to clinical trials. The review aims to elucidate the structure-activity relationships (SAR) that govern the interaction between TSPO and its ligands, thereby offering insights into the development of new therapeutic agents targeting TSPO for the treatment of neuroinflammatory conditions. Overall, this work provided an update on previous finding and serves as a valuable resource for researchers in the field.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
新旧18kda转运蛋白配体的构效关系(SAR)分析进展。
转运蛋白18kda (TSPO)是一种重要的线粒体外蛋白,参与胆固醇转运,这对类固醇的产生至关重要。作为神经炎症的主要标志物,TSPO与各种神经退行性疾病和神经精神疾病的发生和进展有关。本文综述了TSPO配体的结构多样性,其中许多配体经过选择性中枢苯二氮卓受体(CBR)配体的修饰,以增强其对TSPO的亲和力。本文讨论了这些配体设计的重大进展,强调了它们的结合功效和特异性。此外,它还提供了几个已进入临床试验的TSPO配体的最新进展。本文旨在阐明控制TSPO与其配体之间相互作用的结构-活性关系(SAR),从而为开发针对TSPO治疗神经炎症疾病的新药物提供见解。总的来说,这项工作为以前的发现提供了更新,并为该领域的研究人员提供了宝贵的资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Diversity
Molecular Diversity 化学-化学综合
CiteScore
7.30
自引率
7.90%
发文量
219
审稿时长
2.7 months
期刊介绍: Molecular Diversity is a new publication forum for the rapid publication of refereed papers dedicated to describing the development, application and theory of molecular diversity and combinatorial chemistry in basic and applied research and drug discovery. The journal publishes both short and full papers, perspectives, news and reviews dealing with all aspects of the generation of molecular diversity, application of diversity for screening against alternative targets of all types (biological, biophysical, technological), analysis of results obtained and their application in various scientific disciplines/approaches including: combinatorial chemistry and parallel synthesis; small molecule libraries; microwave synthesis; flow synthesis; fluorous synthesis; diversity oriented synthesis (DOS); nanoreactors; click chemistry; multiplex technologies; fragment- and ligand-based design; structure/function/SAR; computational chemistry and molecular design; chemoinformatics; screening techniques and screening interfaces; analytical and purification methods; robotics, automation and miniaturization; targeted libraries; display libraries; peptides and peptoids; proteins; oligonucleotides; carbohydrates; natural diversity; new methods of library formulation and deconvolution; directed evolution, origin of life and recombination; search techniques, landscapes, random chemistry and more;
期刊最新文献
Synthesis, DFT study, in silico ADMET evaluation, molecular docking, and QSAR analysis of new anti-tuberculosis drugs derived from 2-hydroxybenzohydrazide derivatives. Computational framework for minimizing off-target toxicity in capecitabine treatment using natural compounds. Integrating network pharmacology, molecular docking, and bioinformatics to explore the mechanism of sparganii rhizoma in the treatment of laryngeal cancer. Structural insights of AKT and its activation mechanism for drug development. Identification of effective synthetic molecules against viral-induced cytokine release syndrome using in silico and in vitro approaches.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1