Synthesis, DFT study, in silico ADMET evaluation, molecular docking, and QSAR analysis of new anti-tuberculosis drugs derived from 2-hydroxybenzohydrazide derivatives.
Alaa E Hassanien, Ghada Elsherbiny, Gamal M Abdelfattah, Marwa M Abdel-Aziz, Eman A El-Hagrassey
{"title":"Synthesis, DFT study, in silico ADMET evaluation, molecular docking, and QSAR analysis of new anti-tuberculosis drugs derived from 2-hydroxybenzohydrazide derivatives.","authors":"Alaa E Hassanien, Ghada Elsherbiny, Gamal M Abdelfattah, Marwa M Abdel-Aziz, Eman A El-Hagrassey","doi":"10.1007/s11030-025-11130-9","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigates the potential of novel thiazole and hydroxybenzohydrazide derivatives as antitubercular agents. Using molecular docking and density functional theory (DFT) calculations, the binding affinities of these derivatives to the enoyl-acyl carrier protein reductase (InhA) enzyme of M. tb were assessed. InhA is crucial for the mycobacterial fatty acid synthase II (FAS-II) pathway, making it a prime target for drug development. QSAR analysis was employed to relate molecular descriptors to biological activity, and ADMET descriptors evaluated the pharmacokinetics and toxicity of the compounds. Experimental synthesis of the compounds and their characterization via IR and NMR spectroscopy confirmed their structures. DFT calculations revealed multiple conformers for each compound, with specific isomers showing enhanced stability and favorable binding interactions with InhA. These findings suggest that the synthesized derivatives have potential as new antitubercular agents, offering a basis for future drug development strategies against multidrug-resistant TB.</p>","PeriodicalId":708,"journal":{"name":"Molecular Diversity","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Diversity","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11030-025-11130-9","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the potential of novel thiazole and hydroxybenzohydrazide derivatives as antitubercular agents. Using molecular docking and density functional theory (DFT) calculations, the binding affinities of these derivatives to the enoyl-acyl carrier protein reductase (InhA) enzyme of M. tb were assessed. InhA is crucial for the mycobacterial fatty acid synthase II (FAS-II) pathway, making it a prime target for drug development. QSAR analysis was employed to relate molecular descriptors to biological activity, and ADMET descriptors evaluated the pharmacokinetics and toxicity of the compounds. Experimental synthesis of the compounds and their characterization via IR and NMR spectroscopy confirmed their structures. DFT calculations revealed multiple conformers for each compound, with specific isomers showing enhanced stability and favorable binding interactions with InhA. These findings suggest that the synthesized derivatives have potential as new antitubercular agents, offering a basis for future drug development strategies against multidrug-resistant TB.
期刊介绍:
Molecular Diversity is a new publication forum for the rapid publication of refereed papers dedicated to describing the development, application and theory of molecular diversity and combinatorial chemistry in basic and applied research and drug discovery. The journal publishes both short and full papers, perspectives, news and reviews dealing with all aspects of the generation of molecular diversity, application of diversity for screening against alternative targets of all types (biological, biophysical, technological), analysis of results obtained and their application in various scientific disciplines/approaches including:
combinatorial chemistry and parallel synthesis;
small molecule libraries;
microwave synthesis;
flow synthesis;
fluorous synthesis;
diversity oriented synthesis (DOS);
nanoreactors;
click chemistry;
multiplex technologies;
fragment- and ligand-based design;
structure/function/SAR;
computational chemistry and molecular design;
chemoinformatics;
screening techniques and screening interfaces;
analytical and purification methods;
robotics, automation and miniaturization;
targeted libraries;
display libraries;
peptides and peptoids;
proteins;
oligonucleotides;
carbohydrates;
natural diversity;
new methods of library formulation and deconvolution;
directed evolution, origin of life and recombination;
search techniques, landscapes, random chemistry and more;