Synthesis, antimicrobial, antioxidant, tyrosinase inhibitory activities, and computational studies of novel chromen[2,3-c]pyrazole derivatives.

IF 3.9 2区 化学 Q2 CHEMISTRY, APPLIED Molecular Diversity Pub Date : 2024-12-03 DOI:10.1007/s11030-024-11051-z
Velmurugan Loganathan, Arunadevi Mani, Idhayadhulla Akbar, Anis Ahamed, Hissah Abdulrahman Alodaini, Desta Galona Gerbu, Aseer Manilal
{"title":"Synthesis, antimicrobial, antioxidant, tyrosinase inhibitory activities, and computational studies of novel chromen[2,3-c]pyrazole derivatives.","authors":"Velmurugan Loganathan, Arunadevi Mani, Idhayadhulla Akbar, Anis Ahamed, Hissah Abdulrahman Alodaini, Desta Galona Gerbu, Aseer Manilal","doi":"10.1007/s11030-024-11051-z","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, one-pot multicomponent reactions of novel chromeno[2,3-c]pyrazole derivatives (1-14) were performed using an AlCl<sub>3</sub> catalyst via cyclisation. Various spectral and chromatographic techniques were used to elucidate the structure of the synthesised derivatives (1-14). The synthesised compounds were then inspected for their antibacterial, antioxidant, and tyrosinase inhibition activities. An in silico screening approach was also employed to identify highly potent derivatives. Besides, we utilised density functional theory (DFT) with the B3LYP/6-31G<sup>+</sup> (d, p) basis set to optimise the newly modified derivatives. This approach was used to calculate various properties, including electron density, electrostatic potential map, interaction strength, frontier molecular orbital energy, and reactivity characteristics. To examine the binding affinity, modes, and stability of the protein-drug complex, molecular docking with the 2Y9X protein structure were employed. The findings from DFT computations, along with physicochemical information and molecular docking binding affinity, showed promising results than standard and low active compound 1. The absorption, metabolism, and cytotoxic characteristics of all the novel derivatives were investigated in the ADMET prediction. Our findings could prove valuable in developing novel drugs for medicinal and pharmaceutical fields.</p>","PeriodicalId":708,"journal":{"name":"Molecular Diversity","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Diversity","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11030-024-11051-z","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, one-pot multicomponent reactions of novel chromeno[2,3-c]pyrazole derivatives (1-14) were performed using an AlCl3 catalyst via cyclisation. Various spectral and chromatographic techniques were used to elucidate the structure of the synthesised derivatives (1-14). The synthesised compounds were then inspected for their antibacterial, antioxidant, and tyrosinase inhibition activities. An in silico screening approach was also employed to identify highly potent derivatives. Besides, we utilised density functional theory (DFT) with the B3LYP/6-31G+ (d, p) basis set to optimise the newly modified derivatives. This approach was used to calculate various properties, including electron density, electrostatic potential map, interaction strength, frontier molecular orbital energy, and reactivity characteristics. To examine the binding affinity, modes, and stability of the protein-drug complex, molecular docking with the 2Y9X protein structure were employed. The findings from DFT computations, along with physicochemical information and molecular docking binding affinity, showed promising results than standard and low active compound 1. The absorption, metabolism, and cytotoxic characteristics of all the novel derivatives were investigated in the ADMET prediction. Our findings could prove valuable in developing novel drugs for medicinal and pharmaceutical fields.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
新型铬[2,3-c]吡唑衍生物的合成、抗菌、抗氧化、酪氨酸酶抑制活性及计算研究。
本研究以AlCl3为催化剂,通过环化反应,对新型[2,3-c]吡唑衍生物(1-14)进行了一锅多组分反应。各种光谱和色谱技术被用来阐明合成的衍生物的结构(1-14)。然后检测合成的化合物的抗菌、抗氧化和酪氨酸酶抑制活性。还采用了一种硅筛选方法来鉴定高效衍生物。此外,我们利用密度泛函理论(DFT)与B3LYP/6-31G+ (d, p)基集来优化新修饰的导数。利用该方法计算了电子密度、静电势图、相互作用强度、前沿分子轨道能和反应性等各种性质。为了检验蛋白-药物复合物的结合亲和力、结合模式和稳定性,我们采用了与2Y9X蛋白结构的分子对接。DFT计算结果,以及物理化学信息和分子对接结合亲和力,显示出比标准和低活性化合物1更有希望的结果。在ADMET预测中,研究了所有新衍生物的吸收、代谢和细胞毒性特性。我们的发现可能对开发医药和制药领域的新药有价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Diversity
Molecular Diversity 化学-化学综合
CiteScore
7.30
自引率
7.90%
发文量
219
审稿时长
2.7 months
期刊介绍: Molecular Diversity is a new publication forum for the rapid publication of refereed papers dedicated to describing the development, application and theory of molecular diversity and combinatorial chemistry in basic and applied research and drug discovery. The journal publishes both short and full papers, perspectives, news and reviews dealing with all aspects of the generation of molecular diversity, application of diversity for screening against alternative targets of all types (biological, biophysical, technological), analysis of results obtained and their application in various scientific disciplines/approaches including: combinatorial chemistry and parallel synthesis; small molecule libraries; microwave synthesis; flow synthesis; fluorous synthesis; diversity oriented synthesis (DOS); nanoreactors; click chemistry; multiplex technologies; fragment- and ligand-based design; structure/function/SAR; computational chemistry and molecular design; chemoinformatics; screening techniques and screening interfaces; analytical and purification methods; robotics, automation and miniaturization; targeted libraries; display libraries; peptides and peptoids; proteins; oligonucleotides; carbohydrates; natural diversity; new methods of library formulation and deconvolution; directed evolution, origin of life and recombination; search techniques, landscapes, random chemistry and more;
期刊最新文献
Synthesis and antifungal activity of arecoline derivatives containing amino acid fragments. Discovery of selective ROCK2 inhibitors with free radical scavenging ability for the treatment of gouty arthritis. Targeting cyclin-dependent kinase 11: a computational approach for natural anti-cancer compound discovery. Synthesis and biological evaluation of rationally designed pyrazoles as insecticidal agents. Optimizing kinase and PARP inhibitor combinations through machine learning and in silico approaches for targeted brain cancer therapy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1