{"title":"Synthesis, antimicrobial, antioxidant, tyrosinase inhibitory activities, and computational studies of novel chromen[2,3-c]pyrazole derivatives.","authors":"Velmurugan Loganathan, Arunadevi Mani, Idhayadhulla Akbar, Anis Ahamed, Hissah Abdulrahman Alodaini, Desta Galona Gerbu, Aseer Manilal","doi":"10.1007/s11030-024-11051-z","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, one-pot multicomponent reactions of novel chromeno[2,3-c]pyrazole derivatives (1-14) were performed using an AlCl<sub>3</sub> catalyst via cyclisation. Various spectral and chromatographic techniques were used to elucidate the structure of the synthesised derivatives (1-14). The synthesised compounds were then inspected for their antibacterial, antioxidant, and tyrosinase inhibition activities. An in silico screening approach was also employed to identify highly potent derivatives. Besides, we utilised density functional theory (DFT) with the B3LYP/6-31G<sup>+</sup> (d, p) basis set to optimise the newly modified derivatives. This approach was used to calculate various properties, including electron density, electrostatic potential map, interaction strength, frontier molecular orbital energy, and reactivity characteristics. To examine the binding affinity, modes, and stability of the protein-drug complex, molecular docking with the 2Y9X protein structure were employed. The findings from DFT computations, along with physicochemical information and molecular docking binding affinity, showed promising results than standard and low active compound 1. The absorption, metabolism, and cytotoxic characteristics of all the novel derivatives were investigated in the ADMET prediction. Our findings could prove valuable in developing novel drugs for medicinal and pharmaceutical fields.</p>","PeriodicalId":708,"journal":{"name":"Molecular Diversity","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Diversity","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11030-024-11051-z","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, one-pot multicomponent reactions of novel chromeno[2,3-c]pyrazole derivatives (1-14) were performed using an AlCl3 catalyst via cyclisation. Various spectral and chromatographic techniques were used to elucidate the structure of the synthesised derivatives (1-14). The synthesised compounds were then inspected for their antibacterial, antioxidant, and tyrosinase inhibition activities. An in silico screening approach was also employed to identify highly potent derivatives. Besides, we utilised density functional theory (DFT) with the B3LYP/6-31G+ (d, p) basis set to optimise the newly modified derivatives. This approach was used to calculate various properties, including electron density, electrostatic potential map, interaction strength, frontier molecular orbital energy, and reactivity characteristics. To examine the binding affinity, modes, and stability of the protein-drug complex, molecular docking with the 2Y9X protein structure were employed. The findings from DFT computations, along with physicochemical information and molecular docking binding affinity, showed promising results than standard and low active compound 1. The absorption, metabolism, and cytotoxic characteristics of all the novel derivatives were investigated in the ADMET prediction. Our findings could prove valuable in developing novel drugs for medicinal and pharmaceutical fields.
期刊介绍:
Molecular Diversity is a new publication forum for the rapid publication of refereed papers dedicated to describing the development, application and theory of molecular diversity and combinatorial chemistry in basic and applied research and drug discovery. The journal publishes both short and full papers, perspectives, news and reviews dealing with all aspects of the generation of molecular diversity, application of diversity for screening against alternative targets of all types (biological, biophysical, technological), analysis of results obtained and their application in various scientific disciplines/approaches including:
combinatorial chemistry and parallel synthesis;
small molecule libraries;
microwave synthesis;
flow synthesis;
fluorous synthesis;
diversity oriented synthesis (DOS);
nanoreactors;
click chemistry;
multiplex technologies;
fragment- and ligand-based design;
structure/function/SAR;
computational chemistry and molecular design;
chemoinformatics;
screening techniques and screening interfaces;
analytical and purification methods;
robotics, automation and miniaturization;
targeted libraries;
display libraries;
peptides and peptoids;
proteins;
oligonucleotides;
carbohydrates;
natural diversity;
new methods of library formulation and deconvolution;
directed evolution, origin of life and recombination;
search techniques, landscapes, random chemistry and more;