Fluorescent superparamagnetic magnetite-silica nanocomposites as carriers of a platinum diimine complex for photodynamic therapy

IF 4.1 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Biometals Pub Date : 2024-12-02 DOI:10.1007/s10534-024-00654-6
Yuxin Lu, Xuemei Guo, Xin Wang, Xu Zhang, Hongfei Wang, Zhigang Zhang
{"title":"Fluorescent superparamagnetic magnetite-silica nanocomposites as carriers of a platinum diimine complex for photodynamic therapy","authors":"Yuxin Lu,&nbsp;Xuemei Guo,&nbsp;Xin Wang,&nbsp;Xu Zhang,&nbsp;Hongfei Wang,&nbsp;Zhigang Zhang","doi":"10.1007/s10534-024-00654-6","DOIUrl":null,"url":null,"abstract":"<div><p>Novel fluorescent superparamagnetic nanocomposites have been fabricated by introduction of the coumarin group on the surface of amine-functionalized magnetite-silica nanocomposites, and characterized by X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy, fluorescence spectra, dynamic light scattering and vibrating sample magnetometer techniques. The nanocomposites were employed as delivery vehicles of a photoactive platinum diimine complex. The cellular uptake and photocytotoxicity of the photosensitizer-loaded nanocomposites in HeLa cells (human cervical cancer line) or HL-7702 cells (human liver cell line) have been studied by fluorescence spectra and cell viability assay, respectively. The results suggest that the nanocomposites can be used to monitor the cellular uptake of the photosensitizer, and can significantly enhance the photocytotoxicity of the photosensitizer towards cancer cells when employed as carriers of the photosensitizer. Also, the photosensitizer-loaded nanocomposites are almost nontoxic to human normal cells either in the dark or after irradiation.</p></div>","PeriodicalId":491,"journal":{"name":"Biometals","volume":"38 1","pages":"285 - 295"},"PeriodicalIF":4.1000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometals","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10534-024-00654-6","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Novel fluorescent superparamagnetic nanocomposites have been fabricated by introduction of the coumarin group on the surface of amine-functionalized magnetite-silica nanocomposites, and characterized by X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy, fluorescence spectra, dynamic light scattering and vibrating sample magnetometer techniques. The nanocomposites were employed as delivery vehicles of a photoactive platinum diimine complex. The cellular uptake and photocytotoxicity of the photosensitizer-loaded nanocomposites in HeLa cells (human cervical cancer line) or HL-7702 cells (human liver cell line) have been studied by fluorescence spectra and cell viability assay, respectively. The results suggest that the nanocomposites can be used to monitor the cellular uptake of the photosensitizer, and can significantly enhance the photocytotoxicity of the photosensitizer towards cancer cells when employed as carriers of the photosensitizer. Also, the photosensitizer-loaded nanocomposites are almost nontoxic to human normal cells either in the dark or after irradiation.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
荧光超顺磁性磁铁矿-二氧化硅纳米复合材料作为光动力治疗铂二亚胺配合物的载体。
在胺官能化磁铁矿-二氧化硅纳米复合材料表面引入香豆素基团制备了新型超顺磁荧光纳米复合材料,并利用x射线衍射、傅里叶变换红外光谱、透射电镜、荧光光谱、动态光散射和振动样品磁强计等技术对其进行了表征。纳米复合材料被用作光活性铂二亚胺配合物的载体。采用荧光光谱法和细胞活力法分别研究了光敏剂负载纳米复合材料在HeLa细胞(人宫颈癌细胞系)和HL-7702细胞(人肝细胞系)中的细胞摄取和光毒性。结果表明,纳米复合材料可用于监测光敏剂的细胞摄取,并可显著增强光敏剂对癌细胞的光细胞毒性。此外,光敏剂负载的纳米复合材料在黑暗中或辐照后对人体正常细胞几乎无毒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biometals
Biometals 生物-生化与分子生物学
CiteScore
5.90
自引率
8.60%
发文量
111
审稿时长
3 months
期刊介绍: BioMetals is the only established journal to feature the important role of metal ions in chemistry, biology, biochemistry, environmental science, and medicine. BioMetals is an international, multidisciplinary journal singularly devoted to the rapid publication of the fundamental advances of both basic and applied research in this field. BioMetals offers a forum for innovative research and clinical results on the structure and function of: - metal ions - metal chelates, - siderophores, - metal-containing proteins - biominerals in all biosystems. - BioMetals rapidly publishes original articles and reviews. BioMetals is a journal for metals researchers who practice in medicine, biochemistry, pharmacology, toxicology, microbiology, cell biology, chemistry, and plant physiology who are based academic, industrial and government laboratories.
期刊最新文献
Boosting nutritional value: the role of iron fortification in meat and meat products. Mo and Sn exposure associated with the increased of bone mineral density. Metal mixtures and adiposity indicators in women from Northern Mexico. Zinc, copper, copper-to-zinc ratio, and other biometals in blood serum and tumor tissue of patients with colorectal cancer. Mercury toxicity resulting from enzyme alterations- minireview.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1