{"title":"Sustainable strategy of biowaste into graphene-based zinc oxide nanocomposite using green nanotechnology for topical applications.","authors":"Chamundeeswari M, Preethy Kr","doi":"10.1002/bab.2702","DOIUrl":null,"url":null,"abstract":"<p><p>Metal-based nanoparticles have been extensively researched for their distinctive characteristics. Among them, zinc oxide nanoparticles have numerous applications in the field of biomedicine. The phytoextract of Ixora coccinea flowers was used in the synthesis of ZnO nanoparticles replacing the use of harmful reducing chemicals. In the current research, the carbonaceous material from biowaste of Setaria italica was used to synthesize graphene oxide (GO) by Improved Hummer's method. The synthesized GO was converted to reduced GO via green nanotechnology using phytoextract of Prosopis juliflora. The synthesis of reduced Graphene Oxide - Zinc Oxide Nanocomposite (rGO)-ZnO nanocomposite involves a simple, economical one-step magnetic stirring method. UV-visible spectroscopy was used to characterize the synthesized materials, with the maximal absorbance range for ZInc Oxide (ZnO) being 384 nm and for rGO-ZnO composite at 243 and 366 nm, respectively. The x-ray diffraction (XRD) revealed 2θ peaks for ZnO at 31.54°, 34.22°, and 36.08°. For reduced Graphene Oxide (rGO) in rGO-ZnO composite, the XRD revealed 2θ peaks at 21.25°, 21.56°, 23.14°, and for ZnO at 31.74°, 33.24°, 34.29°, 36.23°. The FT-IR demonstrated the vibrational modes of functional groups: -OH stretching, symmetric and antisymmetric -CH<sub>2</sub> stretching, C = C stretching, and C-O stretching. The elemental composition of samples has been analyzed using Energy Dispersive x-ray spectroscop (EDX), and the high percentage of zinc in the composite shows a good loading rate of ZnO on the rGO's surface. By morphological investigation, monolayer sheet structures of rGO loaded with clusters of ZnO are clearly demonstrated. Positive results from therapeutic assays and biocompatibility were found with reduced hemolysis and good anticoagulation abilities proved with statistical approach. Our research is distinctive because a realistic formulation of an rGO-ZnO skin care cream with enhanced therapeutic properties, such as effective stability, spreadability, and significant moisture retention, can be recommended.</p>","PeriodicalId":9274,"journal":{"name":"Biotechnology and applied biochemistry","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology and applied biochemistry","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/bab.2702","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Metal-based nanoparticles have been extensively researched for their distinctive characteristics. Among them, zinc oxide nanoparticles have numerous applications in the field of biomedicine. The phytoextract of Ixora coccinea flowers was used in the synthesis of ZnO nanoparticles replacing the use of harmful reducing chemicals. In the current research, the carbonaceous material from biowaste of Setaria italica was used to synthesize graphene oxide (GO) by Improved Hummer's method. The synthesized GO was converted to reduced GO via green nanotechnology using phytoextract of Prosopis juliflora. The synthesis of reduced Graphene Oxide - Zinc Oxide Nanocomposite (rGO)-ZnO nanocomposite involves a simple, economical one-step magnetic stirring method. UV-visible spectroscopy was used to characterize the synthesized materials, with the maximal absorbance range for ZInc Oxide (ZnO) being 384 nm and for rGO-ZnO composite at 243 and 366 nm, respectively. The x-ray diffraction (XRD) revealed 2θ peaks for ZnO at 31.54°, 34.22°, and 36.08°. For reduced Graphene Oxide (rGO) in rGO-ZnO composite, the XRD revealed 2θ peaks at 21.25°, 21.56°, 23.14°, and for ZnO at 31.74°, 33.24°, 34.29°, 36.23°. The FT-IR demonstrated the vibrational modes of functional groups: -OH stretching, symmetric and antisymmetric -CH2 stretching, C = C stretching, and C-O stretching. The elemental composition of samples has been analyzed using Energy Dispersive x-ray spectroscop (EDX), and the high percentage of zinc in the composite shows a good loading rate of ZnO on the rGO's surface. By morphological investigation, monolayer sheet structures of rGO loaded with clusters of ZnO are clearly demonstrated. Positive results from therapeutic assays and biocompatibility were found with reduced hemolysis and good anticoagulation abilities proved with statistical approach. Our research is distinctive because a realistic formulation of an rGO-ZnO skin care cream with enhanced therapeutic properties, such as effective stability, spreadability, and significant moisture retention, can be recommended.
期刊介绍:
Published since 1979, Biotechnology and Applied Biochemistry is dedicated to the rapid publication of high quality, significant research at the interface between life sciences and their technological exploitation.
The Editors will consider papers for publication based on their novelty and impact as well as their contribution to the advancement of medical biotechnology and industrial biotechnology, covering cutting-edge research in synthetic biology, systems biology, metabolic engineering, bioengineering, biomaterials, biosensing, and nano-biotechnology.