Analysis of chemical exchange in iridium N-heterocyclic carbene complexes using heteronuclear parahydrogen-enhanced NMR

IF 5.9 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Communications Chemistry Pub Date : 2024-12-03 DOI:10.1038/s42004-024-01376-z
Charbel D. Assaf, Xin Gui, Oleg G. Salnikov, Arne Brahms, Nikita V. Chukanov, Ivan V. Skovpin, Eduard Y. Chekmenev, Rainer Herges, Simon B. Duckett, Igor V. Koptyug, Kai Buckenmaier, Rainer Körber, Markus Plaumann, Alexander A. Auer, Jan-Bernd Hövener, Andrey N. Pravdivtsev
{"title":"Analysis of chemical exchange in iridium N-heterocyclic carbene complexes using heteronuclear parahydrogen-enhanced NMR","authors":"Charbel D. Assaf, Xin Gui, Oleg G. Salnikov, Arne Brahms, Nikita V. Chukanov, Ivan V. Skovpin, Eduard Y. Chekmenev, Rainer Herges, Simon B. Duckett, Igor V. Koptyug, Kai Buckenmaier, Rainer Körber, Markus Plaumann, Alexander A. Auer, Jan-Bernd Hövener, Andrey N. Pravdivtsev","doi":"10.1038/s42004-024-01376-z","DOIUrl":null,"url":null,"abstract":"The signal amplification by reversible exchange process (SABRE) enhances NMR signals by unlocking hidden polarization in parahydrogen through interactions with to-be-hyperpolarized substrate molecules when both are transiently bound to an Ir-based organometallic catalyst. Recent efforts focus on optimizing polarization transfer from parahydrogen-derived hydride ligands to the substrate in SABRE. However, this requires quantitative information on ligand exchange rates, which common NMR techniques struggle to provide. Here, we introduce an experimental spin order transfer sequence, with readout occurring at 15N nuclei directly interacting with the catalyst. Enhanced 15N NMR signals overcome sensitivity challenges, encoding substrate dissociation rates. This methodology enables robust data fitting to ligand exchange models, yielding substrate dissociation rate constants with higher precision than classical 1D and 2D 1H NMR approaches. This refinement improves the accuracy of key activation enthalpy ΔH‡ and entropy ΔS‡ estimates. Furthermore, the higher chemical shift dispersion provided by enhanced 15N NMR reveals the kinetics of substrate dissociation for acetonitrile and metronidazole, previously inaccessible via 1H NMR due to small chemical shift differences between free and Ir-bound substrates. The presented approach can be successfully applied not only to isotopically enriched substrates but also to compounds with natural abundance of the to-be-hyperpolarized heteronuclei. Current efforts to enhance NMR signals using the signal amplification by reversible exchange (SABRE) focus on optimizing polarization transfer from parahydrogen-derived hydride ligands to the substrate, but this requires quantitative information on ligand exchange rates, which common NMR techniques struggle to provide. Here, the authors introduce an experimental spin order transfer sequence with readout occurring at hyperpolarization-enhanced 15N nuclei that are directly interacting with the SABRE catalyst, enabling robust evaluation of ligand chemical exchange.","PeriodicalId":10529,"journal":{"name":"Communications Chemistry","volume":" ","pages":"1-10"},"PeriodicalIF":5.9000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42004-024-01376-z.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.nature.com/articles/s42004-024-01376-z","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The signal amplification by reversible exchange process (SABRE) enhances NMR signals by unlocking hidden polarization in parahydrogen through interactions with to-be-hyperpolarized substrate molecules when both are transiently bound to an Ir-based organometallic catalyst. Recent efforts focus on optimizing polarization transfer from parahydrogen-derived hydride ligands to the substrate in SABRE. However, this requires quantitative information on ligand exchange rates, which common NMR techniques struggle to provide. Here, we introduce an experimental spin order transfer sequence, with readout occurring at 15N nuclei directly interacting with the catalyst. Enhanced 15N NMR signals overcome sensitivity challenges, encoding substrate dissociation rates. This methodology enables robust data fitting to ligand exchange models, yielding substrate dissociation rate constants with higher precision than classical 1D and 2D 1H NMR approaches. This refinement improves the accuracy of key activation enthalpy ΔH‡ and entropy ΔS‡ estimates. Furthermore, the higher chemical shift dispersion provided by enhanced 15N NMR reveals the kinetics of substrate dissociation for acetonitrile and metronidazole, previously inaccessible via 1H NMR due to small chemical shift differences between free and Ir-bound substrates. The presented approach can be successfully applied not only to isotopically enriched substrates but also to compounds with natural abundance of the to-be-hyperpolarized heteronuclei. Current efforts to enhance NMR signals using the signal amplification by reversible exchange (SABRE) focus on optimizing polarization transfer from parahydrogen-derived hydride ligands to the substrate, but this requires quantitative information on ligand exchange rates, which common NMR techniques struggle to provide. Here, the authors introduce an experimental spin order transfer sequence with readout occurring at hyperpolarization-enhanced 15N nuclei that are directly interacting with the SABRE catalyst, enabling robust evaluation of ligand chemical exchange.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用异核对氢增强核磁共振分析铱n-杂环碳配合物中的化学交换。
可逆交换过程(SABRE)的信号放大是通过与拟超极化底物分子的相互作用来解锁对氢中隐藏的极化,从而增强核磁共振信号,当两者都与ir基有机金属催化剂短暂结合时。最近的研究重点是优化SABRE中对氢衍生氢化物配体到底物的极化转移。然而,这需要配体交换率的定量信息,这是普通核磁共振技术难以提供的。在这里,我们引入了一个实验自旋顺序转移序列,读取发生在15N原子核直接与催化剂相互作用。增强的15N核磁共振信号克服了灵敏度的挑战,编码底物解离率。该方法使数据适合配体交换模型,得到的底物解离速率常数比传统的1D和2D 1H NMR方法具有更高的精度。这种改进提高了关键活化焓ΔH‡和熵ΔS‡估计的准确性。此外,增强的15N NMR提供了更高的化学位移分散,揭示了乙腈和甲硝唑的底物解离动力学,由于自由底物和ir结合底物之间的化学位移差异很小,以前通过1H NMR无法获得。所提出的方法不仅可以成功地应用于同位素富集的底物,而且可以应用于具有天然丰度的超极化异核化合物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Communications Chemistry
Communications Chemistry Chemistry-General Chemistry
CiteScore
7.70
自引率
1.70%
发文量
146
审稿时长
13 weeks
期刊介绍: Communications Chemistry is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the chemical sciences. Research papers published by the journal represent significant advances bringing new chemical insight to a specialized area of research. We also aim to provide a community forum for issues of importance to all chemists, regardless of sub-discipline.
期刊最新文献
Chemical reactivity of RNA and its modifications with hydrazine. Measurement of phospholipid lateral diffusion at high pressure by in situ magic-angle spinning NMR spectroscopy. Spin-state effect on the efficiency of a post-synthetic modification reaction on a spin crossover complex. Women in chemistry: Q&A with Dr Qi Hao. Women in chemistry: Q&A with Professor Mónica H. Pérez-Temprano.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1