Thomas M Osborn Popp, Mithun Karthikeyan, Elias M Herman, Andrew C Dufur, Costantino Vetriani, Andrew J Nieuwkoop
{"title":"Measurement of phospholipid lateral diffusion at high pressure by in situ magic-angle spinning NMR spectroscopy.","authors":"Thomas M Osborn Popp, Mithun Karthikeyan, Elias M Herman, Andrew C Dufur, Costantino Vetriani, Andrew J Nieuwkoop","doi":"10.1038/s42004-025-01449-7","DOIUrl":null,"url":null,"abstract":"<p><p>The development of experimental methodologies that enable investigations of biochemistry at high pressure promises to yield significant advances in our understanding of life on Earth and its origins. Here, we introduce a method for studying lipid membranes at thermodynamic conditions relevant for life at deep sea hydrothermal vents. Using in situ high pressure magic-angle spinning solid state nuclear magnetic resonance spectroscopy (NMR), we measure changes in the fluidity of model microbial membranes at pressures up to 28 MPa. We find that the fluid-phase lateral diffusion of phospholipids at high pressure is significantly affected by the stoichiometric ratio of lipids in the membrane. Our results were facilitated by an accessible pressurization strategy that we have developed to enable routine preparation of solid state NMR rotors to pressures of 30 MPa or greater.</p>","PeriodicalId":10529,"journal":{"name":"Communications Chemistry","volume":"8 1","pages":"49"},"PeriodicalIF":5.9000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11828890/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1038/s42004-025-01449-7","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The development of experimental methodologies that enable investigations of biochemistry at high pressure promises to yield significant advances in our understanding of life on Earth and its origins. Here, we introduce a method for studying lipid membranes at thermodynamic conditions relevant for life at deep sea hydrothermal vents. Using in situ high pressure magic-angle spinning solid state nuclear magnetic resonance spectroscopy (NMR), we measure changes in the fluidity of model microbial membranes at pressures up to 28 MPa. We find that the fluid-phase lateral diffusion of phospholipids at high pressure is significantly affected by the stoichiometric ratio of lipids in the membrane. Our results were facilitated by an accessible pressurization strategy that we have developed to enable routine preparation of solid state NMR rotors to pressures of 30 MPa or greater.
期刊介绍:
Communications Chemistry is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the chemical sciences. Research papers published by the journal represent significant advances bringing new chemical insight to a specialized area of research. We also aim to provide a community forum for issues of importance to all chemists, regardless of sub-discipline.