Chemical reactivity of RNA and its modifications with hydrazine.

IF 5.9 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Communications Chemistry Pub Date : 2025-02-14 DOI:10.1038/s42004-025-01444-y
Nur Yeşiltaç-Tosun, Yuyang Qi, Chengkang Li, Helena Stafflinger, Katja Hollnagel, Leona Rusling, Jens Wöhnert, Steffen Kaiser, Stefanie Kaiser
{"title":"Chemical reactivity of RNA and its modifications with hydrazine.","authors":"Nur Yeşiltaç-Tosun, Yuyang Qi, Chengkang Li, Helena Stafflinger, Katja Hollnagel, Leona Rusling, Jens Wöhnert, Steffen Kaiser, Stefanie Kaiser","doi":"10.1038/s42004-025-01444-y","DOIUrl":null,"url":null,"abstract":"<p><p>RNA modifications are essential for the regulation of cellular processes and have a key role in diseases such as cancer and neurological disorders. A major challenge in the analysis of RNA modification is the differentiation between isomers, including methylated nucleosides as well as uridine and pseudouridine. A solution is their differential chemical reactivity which enables isomer discrimination by mass spectrometry (MS) or sequencing. In this study, we systematically determine the chemical reactivity of hydrazine with RNA and its native modifications in an aniline-free environment. We optimize the conditions to achieve nearly full conversion of all uridines while avoiding RNA cleavage. We apply the conditions to native tRNA<sup>Phe</sup> which allows discrimination of pseudouridine and uridine by MALDI-MS. Furthermore, we determine the identity of the reaction product of hydrazine with various modified nucleosides using high resolution mass spectrometry and quantify the reaction yield in native tRNA from E. coli and human cells under various hydrazine conditions. Most modified nucleosides react quantitatively at lower hydrazine concentration while uridines do not decompose under these conditions. Thus, this study paves the way to exploit aniline-free hydrazine reactions in the detection of RNA modifications through MS and potentially even long-read RNA sequencing.</p>","PeriodicalId":10529,"journal":{"name":"Communications Chemistry","volume":"8 1","pages":"48"},"PeriodicalIF":5.9000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11829040/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1038/s42004-025-01444-y","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

RNA modifications are essential for the regulation of cellular processes and have a key role in diseases such as cancer and neurological disorders. A major challenge in the analysis of RNA modification is the differentiation between isomers, including methylated nucleosides as well as uridine and pseudouridine. A solution is their differential chemical reactivity which enables isomer discrimination by mass spectrometry (MS) or sequencing. In this study, we systematically determine the chemical reactivity of hydrazine with RNA and its native modifications in an aniline-free environment. We optimize the conditions to achieve nearly full conversion of all uridines while avoiding RNA cleavage. We apply the conditions to native tRNAPhe which allows discrimination of pseudouridine and uridine by MALDI-MS. Furthermore, we determine the identity of the reaction product of hydrazine with various modified nucleosides using high resolution mass spectrometry and quantify the reaction yield in native tRNA from E. coli and human cells under various hydrazine conditions. Most modified nucleosides react quantitatively at lower hydrazine concentration while uridines do not decompose under these conditions. Thus, this study paves the way to exploit aniline-free hydrazine reactions in the detection of RNA modifications through MS and potentially even long-read RNA sequencing.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Communications Chemistry
Communications Chemistry Chemistry-General Chemistry
CiteScore
7.70
自引率
1.70%
发文量
146
审稿时长
13 weeks
期刊介绍: Communications Chemistry is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the chemical sciences. Research papers published by the journal represent significant advances bringing new chemical insight to a specialized area of research. We also aim to provide a community forum for issues of importance to all chemists, regardless of sub-discipline.
期刊最新文献
Chemical reactivity of RNA and its modifications with hydrazine. Measurement of phospholipid lateral diffusion at high pressure by in situ magic-angle spinning NMR spectroscopy. Spin-state effect on the efficiency of a post-synthetic modification reaction on a spin crossover complex. Women in chemistry: Q&A with Dr Qi Hao. Women in chemistry: Q&A with Professor Mónica H. Pérez-Temprano.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1