Effect of Fe doping on the electronic properties of CoSn Kagome semimetal.

IF 2.3 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER Journal of Physics: Condensed Matter Pub Date : 2024-12-20 DOI:10.1088/1361-648X/ad9a46
Kritika Vijay, Kawsar Ali, Najnin Bano, Anju Ahlawat, Mukul Gupta, Ram Janay Choudhary, D K Shukla, Ashok Arya, Soma Banik
{"title":"Effect of Fe doping on the electronic properties of CoSn Kagome semimetal.","authors":"Kritika Vijay, Kawsar Ali, Najnin Bano, Anju Ahlawat, Mukul Gupta, Ram Janay Choudhary, D K Shukla, Ashok Arya, Soma Banik","doi":"10.1088/1361-648X/ad9a46","DOIUrl":null,"url":null,"abstract":"<p><p>Quantum phenomena in two-dimensional Kagome materials lead to exotic topological states and complex magnetism. Here, we have investigated the detailed electronic properties of Co1-xFe<sub><i>x</i></sub>Sn as a function of composition (<i>x</i>) to explore the competing electronic interactions for the origin of complex magnetism and topological properties. We find that the screening effect in the valence electrons increases while the correlation effect decreases with an increase in the Fe doping. Valence fluctuations observed at Co and Fe<i>L</i>2,3edges showed systematic changes in the magnitude of divalent and trivalent states with the increase in<i>x</i>. Fe 3<i>d</i>states are found to be more screened by the conduction electrons than the Co 3<i>d</i>states. A comparison of the theoretical and experimental density of states showed different natures of localized states with strong screening effects on the surface and dominating correlation effects in the bulk for<i>x</i>>0. We have observed localized flat bands on the CoSn (001) surface while quasi-localized flat bands on the Co<sub>0.94</sub>Fe<sub>0.06</sub>Sn (001) surface. The distinct character of the bulk and surface band structure is confirmed in the Fe-doped composition. Hence, the bulk-surface interaction present in Co1-xFe<sub><i>x</i></sub>Sn gives rise to the origin of valence fluctuation, complex magnetism, and topological properties.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics: Condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-648X/ad9a46","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

Quantum phenomena in two-dimensional Kagome materials lead to exotic topological states and complex magnetism. Here, we have investigated the detailed electronic properties of Co1-xFexSn as a function of composition (x) to explore the competing electronic interactions for the origin of complex magnetism and topological properties. We find that the screening effect in the valence electrons increases while the correlation effect decreases with an increase in the Fe doping. Valence fluctuations observed at Co and FeL2,3edges showed systematic changes in the magnitude of divalent and trivalent states with the increase inx. Fe 3dstates are found to be more screened by the conduction electrons than the Co 3dstates. A comparison of the theoretical and experimental density of states showed different natures of localized states with strong screening effects on the surface and dominating correlation effects in the bulk forx>0. We have observed localized flat bands on the CoSn (001) surface while quasi-localized flat bands on the Co0.94Fe0.06Sn (001) surface. The distinct character of the bulk and surface band structure is confirmed in the Fe-doped composition. Hence, the bulk-surface interaction present in Co1-xFexSn gives rise to the origin of valence fluctuation, complex magnetism, and topological properties.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Physics: Condensed Matter
Journal of Physics: Condensed Matter 物理-物理:凝聚态物理
CiteScore
5.30
自引率
7.40%
发文量
1288
审稿时长
2.1 months
期刊介绍: Journal of Physics: Condensed Matter covers the whole of condensed matter physics including soft condensed matter and nanostructures. Papers may report experimental, theoretical and simulation studies. Note that papers must contain fundamental condensed matter science: papers reporting methods of materials preparation or properties of materials without novel condensed matter content will not be accepted.
期刊最新文献
Drastic enhancement of electronic correlations induced by hydrogen insertion in the cerium intermetallic compound CeFeSi. Effect of Fe doping on the electronic properties of CoSn Kagome semimetal. A remarkable match of optical response in the amorphous-crystalline and zinc blende-rock salt phase pairs of GeTe. Theoretical study of the temperature dependence of Auger-Meitner recombination in (Al,Ga)N quantum wells. Nickelocene SPM tip as a molecular spin sensor.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1