Erythropoietin Production in Embryonic Neural Cells is Controlled by Hypoxia Signaling and Histone Deacetylases with an Undifferentiated Cellular State.

IF 3.2 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Molecular and Cellular Biology Pub Date : 2025-01-01 Epub Date: 2024-12-02 DOI:10.1080/10985549.2024.2428717
Yuma Iwamura, Taku Nakai, Koichiro Kato, Hirotaka Ishioka, Masayuki Yamamoto, Ikuo Hirano, Norio Suzuki
{"title":"Erythropoietin Production in Embryonic Neural Cells is Controlled by Hypoxia Signaling and Histone Deacetylases with an Undifferentiated Cellular State.","authors":"Yuma Iwamura, Taku Nakai, Koichiro Kato, Hirotaka Ishioka, Masayuki Yamamoto, Ikuo Hirano, Norio Suzuki","doi":"10.1080/10985549.2024.2428717","DOIUrl":null,"url":null,"abstract":"<p><p>During mammalian development, production sites of the erythroid growth factor erythropoietin (EPO) shift from the neural tissues to the liver in embryos and to the kidneys in adults. Embryonic neural EPO-producing (NEP) cells, a subpopulation of neuroepithelial and neural crest cells, express the <i>Epo</i> gene between embryonic day (E) 8.5 and E11.5 to promote primitive erythropoiesis in mice. While <i>Epo</i> gene expression in the liver and kidneys is induced under hypoxic conditions through hypoxia-inducible transcription factors (HIFs), the <i>Epo</i> gene regulatory mechanisms in NEP cells remain to be elucidated. Here, we confirmed the presence of cells co-expressing EPO and HIFs in mouse neural tubes, where the hypoxic microenvironment activates HIFs. Chemical activation and inhibition of HIFs demonstrated the hypoxic regulation of <i>EPO</i> expression in human fetal neural progenitors and mouse embryonic neural tissues. In addition, we found that histone deacetylase inhibitors can reactivate EPO production in cell lines derived from NEP cells and human neuroblastoma, as well as in mouse primary neural crest cells, while rejuvenating these cells. Furthermore, the ability of the rejuvenated cells to produce EPO was maintained in hypoxia. Thus, EPO production is controlled by epigenetic mechanisms and hypoxia signaling in the immature state of hypoxic NEP cells.</p>","PeriodicalId":18658,"journal":{"name":"Molecular and Cellular Biology","volume":" ","pages":"32-45"},"PeriodicalIF":3.2000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and Cellular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/10985549.2024.2428717","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/2 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

During mammalian development, production sites of the erythroid growth factor erythropoietin (EPO) shift from the neural tissues to the liver in embryos and to the kidneys in adults. Embryonic neural EPO-producing (NEP) cells, a subpopulation of neuroepithelial and neural crest cells, express the Epo gene between embryonic day (E) 8.5 and E11.5 to promote primitive erythropoiesis in mice. While Epo gene expression in the liver and kidneys is induced under hypoxic conditions through hypoxia-inducible transcription factors (HIFs), the Epo gene regulatory mechanisms in NEP cells remain to be elucidated. Here, we confirmed the presence of cells co-expressing EPO and HIFs in mouse neural tubes, where the hypoxic microenvironment activates HIFs. Chemical activation and inhibition of HIFs demonstrated the hypoxic regulation of EPO expression in human fetal neural progenitors and mouse embryonic neural tissues. In addition, we found that histone deacetylase inhibitors can reactivate EPO production in cell lines derived from NEP cells and human neuroblastoma, as well as in mouse primary neural crest cells, while rejuvenating these cells. Furthermore, the ability of the rejuvenated cells to produce EPO was maintained in hypoxia. Thus, EPO production is controlled by epigenetic mechanisms and hypoxia signaling in the immature state of hypoxic NEP cells.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
胚胎神经细胞中促红细胞生成素的产生受缺氧信号和未分化细胞状态组蛋白去乙酰化酶的控制。
在哺乳动物发育过程中,促红细胞生成素(EPO)的产生位点在胚胎时从神经组织转移到肝脏,在成年时转移到肾脏。胚胎神经Epo生成细胞(NEP)是神经上皮细胞和神经嵴细胞的一个亚群,在胚胎日(E) 8.5至E11.5之间表达Epo基因,促进小鼠原始红细胞生成。虽然在缺氧条件下,Epo基因在肝脏和肾脏中的表达是通过缺氧诱导转录因子(hif)诱导的,但Epo基因在NEP细胞中的调控机制仍有待阐明。在这里,我们证实了小鼠神经管中存在共表达EPO和hif的细胞,其中缺氧微环境激活了hif。hif的化学激活和抑制证实了缺氧对人胚胎神经祖细胞和小鼠胚胎神经组织中EPO表达的调节。此外,我们发现组蛋白去乙酰化酶抑制剂可以重新激活来自NEP细胞和人神经母细胞瘤的细胞系以及小鼠原代神经嵴细胞的EPO产生,同时使这些细胞恢复活力。此外,在缺氧条件下,恢复活力的细胞产生EPO的能力得以维持。因此,在缺氧NEP细胞的未成熟状态下,EPO的产生受表观遗传机制和缺氧信号的控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular and Cellular Biology
Molecular and Cellular Biology 生物-生化与分子生物学
CiteScore
9.80
自引率
1.90%
发文量
120
审稿时长
1 months
期刊介绍: Molecular and Cellular Biology (MCB) showcases significant discoveries in cellular morphology and function, genome organization, regulation of genetic expression, morphogenesis, and somatic cell genetics. The journal also examines viral systems, publishing papers that emphasize their impact on the cell.
期刊最新文献
Kinase Inhibitor-Induced Cell-Type Specific Vacuole Formation in the Absence of Canonical ATG5-Dependent Autophagy Initiation Pathway. Loss of HNRNPK During Cell Senescence Linked to Reduced Production of CDC20. acp³U: A Conserved RNA Modification with Lessons Yet to Unfold. SIRT3 Deficiency Promotes Lung Endothelial Pyroptosis Through Impairing Mitophagy to Activate NLRP3 Inflammasome During Sepsis-Induced Acute Lung Injury. Mitogen-Activated Protein Kinase Phosphatase-5 is Required for TGF-β Signaling Through a JNK-Dependent Pathway.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1