Kinase Inhibitor-Induced Cell-Type Specific Vacuole Formation in the Absence of Canonical ATG5-Dependent Autophagy Initiation Pathway.

IF 3.2 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Molecular and Cellular Biology Pub Date : 2025-02-02 DOI:10.1080/10985549.2025.2454421
Susan Jose, Himanshi Sharma, Janki Insan, Khushboo Sharma, Varun Arora, Sameera Puranapanda, Sonam Dhamija, Nabil Eid, Manoj B Menon
{"title":"Kinase Inhibitor-Induced Cell-Type Specific Vacuole Formation in the Absence of Canonical ATG5-Dependent Autophagy Initiation Pathway.","authors":"Susan Jose, Himanshi Sharma, Janki Insan, Khushboo Sharma, Varun Arora, Sameera Puranapanda, Sonam Dhamija, Nabil Eid, Manoj B Menon","doi":"10.1080/10985549.2025.2454421","DOIUrl":null,"url":null,"abstract":"<p><p>Pyridinyl-imidazole class p38 MAPKα/β (MAPK14/MAPK11) inhibitors including SB202190 have been shown to induce cell-type specific defective autophagy resulting in micron-scale vacuole formation, cell death, and tumor suppression. We had earlier shown that this is an off-target effect of SB202190. Here we provide evidence that this vacuole formation is independent of ATG5-mediated canonical autophagosome initiation. While SB202190 interferes with autophagic flux in many cell lines parallel to vacuolation, autophagy-deficient DU-145 cells and CRISPR/Cas9 gene-edited <i>ATG5</i>-knockout A549 cells also undergo vacuolation upon SB202190 treatment. Late-endosomal GTPase RAB7 colocalizes with these compartments and RAB7 GTP-binding is essential for SB202190-induced vacuolation. A screen for modulators of SB202190-induced vacuolation revealed molecules including multi-kinase inhibitor sorafenib as inhibitors of vacuolation and sorafenib co-treatment enhanced cytotoxicity of SB202190. Moreover, VE-821, an ATR inhibitor was found to phenocopy the cell-type specific vacuolation response of SB202190. To identify the factors determining the cell-type specificity of vacuolation induced by SB-compounds and VE-821, we compared the transcriptomics data from vacuole-forming and non-vacuole-forming cancer cell lines and identified a gene expression signature that may define sensitivity of cells to these small-molecules. Further analyses using small molecule tools and the gene signature discovered here, could reveal novel mechanisms regulating this interesting anti-cancer phenotype.</p>","PeriodicalId":18658,"journal":{"name":"Molecular and Cellular Biology","volume":" ","pages":"1-17"},"PeriodicalIF":3.2000,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and Cellular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/10985549.2025.2454421","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Pyridinyl-imidazole class p38 MAPKα/β (MAPK14/MAPK11) inhibitors including SB202190 have been shown to induce cell-type specific defective autophagy resulting in micron-scale vacuole formation, cell death, and tumor suppression. We had earlier shown that this is an off-target effect of SB202190. Here we provide evidence that this vacuole formation is independent of ATG5-mediated canonical autophagosome initiation. While SB202190 interferes with autophagic flux in many cell lines parallel to vacuolation, autophagy-deficient DU-145 cells and CRISPR/Cas9 gene-edited ATG5-knockout A549 cells also undergo vacuolation upon SB202190 treatment. Late-endosomal GTPase RAB7 colocalizes with these compartments and RAB7 GTP-binding is essential for SB202190-induced vacuolation. A screen for modulators of SB202190-induced vacuolation revealed molecules including multi-kinase inhibitor sorafenib as inhibitors of vacuolation and sorafenib co-treatment enhanced cytotoxicity of SB202190. Moreover, VE-821, an ATR inhibitor was found to phenocopy the cell-type specific vacuolation response of SB202190. To identify the factors determining the cell-type specificity of vacuolation induced by SB-compounds and VE-821, we compared the transcriptomics data from vacuole-forming and non-vacuole-forming cancer cell lines and identified a gene expression signature that may define sensitivity of cells to these small-molecules. Further analyses using small molecule tools and the gene signature discovered here, could reveal novel mechanisms regulating this interesting anti-cancer phenotype.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular and Cellular Biology
Molecular and Cellular Biology 生物-生化与分子生物学
CiteScore
9.80
自引率
1.90%
发文量
120
审稿时长
1 months
期刊介绍: Molecular and Cellular Biology (MCB) showcases significant discoveries in cellular morphology and function, genome organization, regulation of genetic expression, morphogenesis, and somatic cell genetics. The journal also examines viral systems, publishing papers that emphasize their impact on the cell.
期刊最新文献
Kinase Inhibitor-Induced Cell-Type Specific Vacuole Formation in the Absence of Canonical ATG5-Dependent Autophagy Initiation Pathway. Loss of HNRNPK During Cell Senescence Linked to Reduced Production of CDC20. acp³U: A Conserved RNA Modification with Lessons Yet to Unfold. SIRT3 Deficiency Promotes Lung Endothelial Pyroptosis Through Impairing Mitophagy to Activate NLRP3 Inflammasome During Sepsis-Induced Acute Lung Injury. Mitogen-Activated Protein Kinase Phosphatase-5 is Required for TGF-β Signaling Through a JNK-Dependent Pathway.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1