Susan Jose, Himanshi Sharma, Janki Insan, Khushboo Sharma, Varun Arora, Sameera Puranapanda, Sonam Dhamija, Nabil Eid, Manoj B Menon
{"title":"Kinase Inhibitor-Induced Cell-Type Specific Vacuole Formation in the Absence of Canonical ATG5-Dependent Autophagy Initiation Pathway.","authors":"Susan Jose, Himanshi Sharma, Janki Insan, Khushboo Sharma, Varun Arora, Sameera Puranapanda, Sonam Dhamija, Nabil Eid, Manoj B Menon","doi":"10.1080/10985549.2025.2454421","DOIUrl":null,"url":null,"abstract":"<p><p>Pyridinyl-imidazole class p38 MAPKα/β (MAPK14/MAPK11) inhibitors including SB202190 have been shown to induce cell-type specific defective autophagy resulting in micron-scale vacuole formation, cell death, and tumor suppression. We had earlier shown that this is an off-target effect of SB202190. Here we provide evidence that this vacuole formation is independent of ATG5-mediated canonical autophagosome initiation. While SB202190 interferes with autophagic flux in many cell lines parallel to vacuolation, autophagy-deficient DU-145 cells and CRISPR/Cas9 gene-edited <i>ATG5</i>-knockout A549 cells also undergo vacuolation upon SB202190 treatment. Late-endosomal GTPase RAB7 colocalizes with these compartments and RAB7 GTP-binding is essential for SB202190-induced vacuolation. A screen for modulators of SB202190-induced vacuolation revealed molecules including multi-kinase inhibitor sorafenib as inhibitors of vacuolation and sorafenib co-treatment enhanced cytotoxicity of SB202190. Moreover, VE-821, an ATR inhibitor was found to phenocopy the cell-type specific vacuolation response of SB202190. To identify the factors determining the cell-type specificity of vacuolation induced by SB-compounds and VE-821, we compared the transcriptomics data from vacuole-forming and non-vacuole-forming cancer cell lines and identified a gene expression signature that may define sensitivity of cells to these small-molecules. Further analyses using small molecule tools and the gene signature discovered here, could reveal novel mechanisms regulating this interesting anti-cancer phenotype.</p>","PeriodicalId":18658,"journal":{"name":"Molecular and Cellular Biology","volume":" ","pages":"1-17"},"PeriodicalIF":3.2000,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and Cellular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/10985549.2025.2454421","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Pyridinyl-imidazole class p38 MAPKα/β (MAPK14/MAPK11) inhibitors including SB202190 have been shown to induce cell-type specific defective autophagy resulting in micron-scale vacuole formation, cell death, and tumor suppression. We had earlier shown that this is an off-target effect of SB202190. Here we provide evidence that this vacuole formation is independent of ATG5-mediated canonical autophagosome initiation. While SB202190 interferes with autophagic flux in many cell lines parallel to vacuolation, autophagy-deficient DU-145 cells and CRISPR/Cas9 gene-edited ATG5-knockout A549 cells also undergo vacuolation upon SB202190 treatment. Late-endosomal GTPase RAB7 colocalizes with these compartments and RAB7 GTP-binding is essential for SB202190-induced vacuolation. A screen for modulators of SB202190-induced vacuolation revealed molecules including multi-kinase inhibitor sorafenib as inhibitors of vacuolation and sorafenib co-treatment enhanced cytotoxicity of SB202190. Moreover, VE-821, an ATR inhibitor was found to phenocopy the cell-type specific vacuolation response of SB202190. To identify the factors determining the cell-type specificity of vacuolation induced by SB-compounds and VE-821, we compared the transcriptomics data from vacuole-forming and non-vacuole-forming cancer cell lines and identified a gene expression signature that may define sensitivity of cells to these small-molecules. Further analyses using small molecule tools and the gene signature discovered here, could reveal novel mechanisms regulating this interesting anti-cancer phenotype.
期刊介绍:
Molecular and Cellular Biology (MCB) showcases significant discoveries in cellular morphology and function, genome organization, regulation of genetic expression, morphogenesis, and somatic cell genetics. The journal also examines viral systems, publishing papers that emphasize their impact on the cell.