{"title":"A simple graphics processing unit-accelerated propagation routine for laser pulses in the strong-field regime.","authors":"A Martínez de Velasco, K S E Eikema","doi":"10.1063/5.0220970","DOIUrl":null,"url":null,"abstract":"<p><p>We present a simple and easy-to-implement Graphics Processing Unit (GPU)-accelerated routine to numerically simulate the propagation of ultrashort and intense laser pulses as they interact with a medium. The routine is based on the solution of Maxwell's wave equation in the frequency domain with an extended Crank-Nicolson algorithm implemented in the Nvidia CUDA C++ programming language. The main advantages of our method are its significant speed-up factor and its ease of implementation, requiring only basic knowledge of CUDA and C++. In this article, we review the strong-field wave equations to be solved and their discretization and demonstrate how to implement a numerical solver for them on an Nvidia GPU. We show the results of the simulation of a near-infrared laser pulse propagating through a partially ionized atomic gas and discuss the performance of our GPU-accelerated scheme. Compared to a naïve central processing unit implementation of the same routine, our GPU-accelerated version is up to 198 times faster in standard regimes.</p>","PeriodicalId":21111,"journal":{"name":"Review of Scientific Instruments","volume":"95 12","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Review of Scientific Instruments","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0220970","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
Abstract
We present a simple and easy-to-implement Graphics Processing Unit (GPU)-accelerated routine to numerically simulate the propagation of ultrashort and intense laser pulses as they interact with a medium. The routine is based on the solution of Maxwell's wave equation in the frequency domain with an extended Crank-Nicolson algorithm implemented in the Nvidia CUDA C++ programming language. The main advantages of our method are its significant speed-up factor and its ease of implementation, requiring only basic knowledge of CUDA and C++. In this article, we review the strong-field wave equations to be solved and their discretization and demonstrate how to implement a numerical solver for them on an Nvidia GPU. We show the results of the simulation of a near-infrared laser pulse propagating through a partially ionized atomic gas and discuss the performance of our GPU-accelerated scheme. Compared to a naïve central processing unit implementation of the same routine, our GPU-accelerated version is up to 198 times faster in standard regimes.
期刊介绍:
Review of Scientific Instruments, is committed to the publication of advances in scientific instruments, apparatuses, and techniques. RSI seeks to meet the needs of engineers and scientists in physics, chemistry, and the life sciences.