Soft x-ray tomography using L1 regularization for MHD modes with limited sight lines in JT-60SA.

IF 1.3 4区 工程技术 Q3 INSTRUMENTS & INSTRUMENTATION Review of Scientific Instruments Pub Date : 2024-12-01 DOI:10.1063/5.0232912
T Bando, M Takechi, S Ohdachi
{"title":"Soft x-ray tomography using L1 regularization for MHD modes with limited sight lines in JT-60SA.","authors":"T Bando, M Takechi, S Ohdachi","doi":"10.1063/5.0232912","DOIUrl":null,"url":null,"abstract":"<p><p>Soft x-ray (SX) tomography is a useful diagnostic in fusion research, and a multi-channel SX diagnostic will be installed in JT-60SA, the largest elongated tokamak in the world. However, in the SX diagnostic of JT-60SA, plasmas will be only viewed from the low field side and the upper side of plasmas; the sight lines are limited, which would be common in future devices as well as JT-60SA. This kind of limited sight lines is not preferred for SX tomography to investigate the spatial structure of magnetohydrodynamics (MHD) modes because inadequate information of plasmas makes artifacts in the reconstructed SX profiles. One of the solutions to reduce the artifacts is to employ L1 regularization, which gives the essential and sparse contributions [Kaptanoglu et al., Phys. Plasmas 30, 033906 (2023)]. In this study, as a first topic, the applicability of L1 regularization to reduce the artifacts in SX tomography with limited sight lines is investigated with traditional L2 regularization for a high beta scenario of JT-60SA where MHD modes would occur. Here, as a series of basis functions, the Fourier-Bessel series (FBS) is employed because FBS has the poloidal Fourier modes explicitly. A disadvantage of FBS is that the accurate equilibrium inside the last closed flux surface (LCFS) is needed; interior measurement such as the motional Stark effect measurement is required, which is not always available during a whole discharge. The second topic of this study is to investigate other appropriate basis functions to study the spatial structure of MHD modes in elongated tokamak plasmas. Here, we introduce Saito's Laplacian eigenfunction (LEF). Saito's LEF can be calculated if LCFS is given and the LEF is expected to show the explicit poloidal Fourier mode. Because the calculation of LCFS with magnetic measurements is a basic task of plasma operations, Saito's LEF may be used anytime. Our investigation showed that L1 regularization can strongly improve the SX tomography with the traditional L2 regularization having FBS/LEF and would be effective against other tomographic problems in fusion devices.</p>","PeriodicalId":21111,"journal":{"name":"Review of Scientific Instruments","volume":"95 12","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Review of Scientific Instruments","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0232912","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

Soft x-ray (SX) tomography is a useful diagnostic in fusion research, and a multi-channel SX diagnostic will be installed in JT-60SA, the largest elongated tokamak in the world. However, in the SX diagnostic of JT-60SA, plasmas will be only viewed from the low field side and the upper side of plasmas; the sight lines are limited, which would be common in future devices as well as JT-60SA. This kind of limited sight lines is not preferred for SX tomography to investigate the spatial structure of magnetohydrodynamics (MHD) modes because inadequate information of plasmas makes artifacts in the reconstructed SX profiles. One of the solutions to reduce the artifacts is to employ L1 regularization, which gives the essential and sparse contributions [Kaptanoglu et al., Phys. Plasmas 30, 033906 (2023)]. In this study, as a first topic, the applicability of L1 regularization to reduce the artifacts in SX tomography with limited sight lines is investigated with traditional L2 regularization for a high beta scenario of JT-60SA where MHD modes would occur. Here, as a series of basis functions, the Fourier-Bessel series (FBS) is employed because FBS has the poloidal Fourier modes explicitly. A disadvantage of FBS is that the accurate equilibrium inside the last closed flux surface (LCFS) is needed; interior measurement such as the motional Stark effect measurement is required, which is not always available during a whole discharge. The second topic of this study is to investigate other appropriate basis functions to study the spatial structure of MHD modes in elongated tokamak plasmas. Here, we introduce Saito's Laplacian eigenfunction (LEF). Saito's LEF can be calculated if LCFS is given and the LEF is expected to show the explicit poloidal Fourier mode. Because the calculation of LCFS with magnetic measurements is a basic task of plasma operations, Saito's LEF may be used anytime. Our investigation showed that L1 regularization can strongly improve the SX tomography with the traditional L2 regularization having FBS/LEF and would be effective against other tomographic problems in fusion devices.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Review of Scientific Instruments
Review of Scientific Instruments 工程技术-物理:应用
CiteScore
3.00
自引率
12.50%
发文量
758
审稿时长
2.6 months
期刊介绍: Review of Scientific Instruments, is committed to the publication of advances in scientific instruments, apparatuses, and techniques. RSI seeks to meet the needs of engineers and scientists in physics, chemistry, and the life sciences.
期刊最新文献
A simple graphics processing unit-accelerated propagation routine for laser pulses in the strong-field regime. Analyzing the effects of reflections on optical diagnostics in the main chamber and divertor of WEST (invited). Application of tunneling magnetoresistance in electromagnetic tomography system construction. Combined Raman spectroscopy and electrical transport measurements in ultra-high vacuum down to 3.7 K. Design of a novel high-speed tensile method for testing the high strain rate tensile behavior of aluminum alloys.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1