Molecular Mechanisms of Hair Follicle Development.

Q2 Environmental Science The Scientific World Journal Pub Date : 2024-11-25 eCollection Date: 2024-01-01 DOI:10.1155/tswj/5259055
Mebrie Zemene Kinde, Tewodros Abere Mekuria, Abebe Tesfaye Gessese, Bemrew Admassu Mengistu
{"title":"Molecular Mechanisms of Hair Follicle Development.","authors":"Mebrie Zemene Kinde, Tewodros Abere Mekuria, Abebe Tesfaye Gessese, Bemrew Admassu Mengistu","doi":"10.1155/tswj/5259055","DOIUrl":null,"url":null,"abstract":"<p><p>Hair is an intricate biological structure that originates from hair follicles (HFs), which are complex mini-organs embedded in the skin. Each HF undergoes continuous cycles of growth (anagen), regression (catagen), and rest (telogen), driven by intricate signaling pathways and interactions between epithelial and mesodermal cells. The development of HFs requires the interplay of several key signaling pathways, including Wnt, Shh, Notch, and BMP. The Wnt pathway is primarily involved in induction, Shh is essential for early organogenesis and later stages of cytodifferentiation, Notch signaling governs the fate of HF stem cells, and BMP plays a role in cytodifferentiation. Hair health is closely associated with psychological well-being and personal distress. While hair loss (alopecia) does not impact biological health, it significantly affects social well-being. Therefore, a deep understanding of the molecular mechanisms underlying HF development is crucial for developing treatments for hair-related problems and improving hair health. This knowledge has led to significant advancements in therapeutic applications, particularly in treating hair loss disorders, enhancing wound healing, and developing cosmetic treatments. This paper aims to review the molecular mechanisms involved in HF development, with an emphasis on their potential impact on human health and well-being.</p>","PeriodicalId":22985,"journal":{"name":"The Scientific World Journal","volume":"2024 ","pages":"5259055"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11614512/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Scientific World Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/tswj/5259055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

Abstract

Hair is an intricate biological structure that originates from hair follicles (HFs), which are complex mini-organs embedded in the skin. Each HF undergoes continuous cycles of growth (anagen), regression (catagen), and rest (telogen), driven by intricate signaling pathways and interactions between epithelial and mesodermal cells. The development of HFs requires the interplay of several key signaling pathways, including Wnt, Shh, Notch, and BMP. The Wnt pathway is primarily involved in induction, Shh is essential for early organogenesis and later stages of cytodifferentiation, Notch signaling governs the fate of HF stem cells, and BMP plays a role in cytodifferentiation. Hair health is closely associated with psychological well-being and personal distress. While hair loss (alopecia) does not impact biological health, it significantly affects social well-being. Therefore, a deep understanding of the molecular mechanisms underlying HF development is crucial for developing treatments for hair-related problems and improving hair health. This knowledge has led to significant advancements in therapeutic applications, particularly in treating hair loss disorders, enhancing wound healing, and developing cosmetic treatments. This paper aims to review the molecular mechanisms involved in HF development, with an emphasis on their potential impact on human health and well-being.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
The Scientific World Journal
The Scientific World Journal 综合性期刊-综合性期刊
CiteScore
5.60
自引率
0.00%
发文量
170
审稿时长
3.7 months
期刊介绍: The Scientific World Journal is a peer-reviewed, Open Access journal that publishes original research, reviews, and clinical studies covering a wide range of subjects in science, technology, and medicine. The journal is divided into 81 subject areas.
期刊最新文献
Exploring the Inhibitory Potential of M. pendans Compounds Against N-Acetylglucosamine (Mur) Receptor: In Silico Insights Into Antibacterial Activity and Drug-Likeness. Deferasirox and Ciprofloxacin: Potential Ternary Complex Formation With Ferric Iron, Pharmacodynamic, and Pharmacokinetic Interactions. Monitoring the Overall Quality of Groundwater Using a Geographic Information System in the Angads Plain (Oujda, Morocco). Chemical Composition, Antioxidant Activity, and Multivariate Analysis of Four Moroccan Essential Oils: Mentha piperita, Mentha pulegium, Thymus serpyllum, and Thymus zygis. Comparative Assessment of Post-Fatigue Resistance of Mandibular First Molars Restored With Polyether Ether Ketone and Lithium Disilicate Endocrowns.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1