Huarong Yue, Jianwei Xia, Jing Zhang, Ju H Park, Xiangpeng Xie
{"title":"Event-based adaptive fixed-time optimal control for saturated fault-tolerant nonlinear multiagent systems via reinforcement learning algorithm.","authors":"Huarong Yue, Jianwei Xia, Jing Zhang, Ju H Park, Xiangpeng Xie","doi":"10.1016/j.neunet.2024.106952","DOIUrl":null,"url":null,"abstract":"<p><p>This article investigates the problem of adaptive fixed-time optimal consensus tracking control for nonlinear multiagent systems (MASs) affected by actuator faults and input saturation. To achieve optimal control, reinforcement learning (RL) algorithm which is implemented based on neural network (NN) is employed. Under the actor-critic structure, an innovative simple positive definite function is constructed to obtain the upper bound of the estimation error of the actor-critic NN updating law, which is crucial for analyzing fixed-time stabilization. Furthermore, auxiliary functions and estimation laws are designed to eliminate the coupling effects resulting from actuator faults and input saturation. Meanwhile, a novel event-triggered mechanism (ETM) that incorporates the consensus tracking errors into the threshold is proposed, thereby effectively conserving communication resources. Based on this, a fixed-time event-triggered control scheme grounded in RL is proposed through the integration of the backstepping technique and fixed-time theory. It is demonstrated that the consensus tracking errors converge to a specified range in a fixed time and all signals within the closed-loop systems are bounded. Finally, simulation results are provided to verify the effectiveness of the proposed control strategy.</p>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"183 ","pages":"106952"},"PeriodicalIF":6.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1016/j.neunet.2024.106952","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/28 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
This article investigates the problem of adaptive fixed-time optimal consensus tracking control for nonlinear multiagent systems (MASs) affected by actuator faults and input saturation. To achieve optimal control, reinforcement learning (RL) algorithm which is implemented based on neural network (NN) is employed. Under the actor-critic structure, an innovative simple positive definite function is constructed to obtain the upper bound of the estimation error of the actor-critic NN updating law, which is crucial for analyzing fixed-time stabilization. Furthermore, auxiliary functions and estimation laws are designed to eliminate the coupling effects resulting from actuator faults and input saturation. Meanwhile, a novel event-triggered mechanism (ETM) that incorporates the consensus tracking errors into the threshold is proposed, thereby effectively conserving communication resources. Based on this, a fixed-time event-triggered control scheme grounded in RL is proposed through the integration of the backstepping technique and fixed-time theory. It is demonstrated that the consensus tracking errors converge to a specified range in a fixed time and all signals within the closed-loop systems are bounded. Finally, simulation results are provided to verify the effectiveness of the proposed control strategy.
期刊介绍:
Neural Networks is a platform that aims to foster an international community of scholars and practitioners interested in neural networks, deep learning, and other approaches to artificial intelligence and machine learning. Our journal invites submissions covering various aspects of neural networks research, from computational neuroscience and cognitive modeling to mathematical analyses and engineering applications. By providing a forum for interdisciplinary discussions between biology and technology, we aim to encourage the development of biologically-inspired artificial intelligence.