Multi-hop interpretable meta learning for few-shot temporal knowledge graph completion.

IF 6 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Neural Networks Pub Date : 2025-03-01 Epub Date: 2024-11-28 DOI:10.1016/j.neunet.2024.106981
Luyi Bai, Shuo Han, Lin Zhu
{"title":"Multi-hop interpretable meta learning for few-shot temporal knowledge graph completion.","authors":"Luyi Bai, Shuo Han, Lin Zhu","doi":"10.1016/j.neunet.2024.106981","DOIUrl":null,"url":null,"abstract":"<p><p>Multi-hop path completion is a key part of temporal knowledge graph completion, which aims to infer complex relationships and obtain interpretable completion results. However, the traditional multi-hop path completion models mainly focus on the static knowledge graph with sufficient relationship instances, and does not consider the impact of timestamp information on the completion path, and is not suitable for few-shot relations. These limitations make the performance of these models not good when dealing with few-shot relationships in temporal knowledge graphs. In order to issue these challenges, we propose the Few-shot Temporal knowledge graph completion model based on the Multi-hop Interpretable meta-learning(FTMI). First, by aggregating the multi-hop neighbor information of the task relationship to generate a time-aware entity representation to enhance the task entity representation, the introduction of the timestamp information dimension enables the FTMI model to understand and deal with the impact of time changes on entities and relationships. In addition, time-aware entity pair representations are encoded using Transformer. At the same time, the specific representation of task relationship is generated by means of mean pooling layer aggregation. In addition, the model applies the reinforcement learning framework to the whole process of multi-hop path completion, constructs the strategy network, designs the new reward function to achieve the balance between path novelty and length, and helps Agent find the optimal path, thus realizing the completion of the temporal knowledge graph with few samples. In the training process, meta-learning is used to enable the model to quickly adapt to new tasks in the case of few samples. A huge number of experiments were carried out on two datasets to validate the model's validity.</p>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"183 ","pages":"106981"},"PeriodicalIF":6.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1016/j.neunet.2024.106981","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/28 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Multi-hop path completion is a key part of temporal knowledge graph completion, which aims to infer complex relationships and obtain interpretable completion results. However, the traditional multi-hop path completion models mainly focus on the static knowledge graph with sufficient relationship instances, and does not consider the impact of timestamp information on the completion path, and is not suitable for few-shot relations. These limitations make the performance of these models not good when dealing with few-shot relationships in temporal knowledge graphs. In order to issue these challenges, we propose the Few-shot Temporal knowledge graph completion model based on the Multi-hop Interpretable meta-learning(FTMI). First, by aggregating the multi-hop neighbor information of the task relationship to generate a time-aware entity representation to enhance the task entity representation, the introduction of the timestamp information dimension enables the FTMI model to understand and deal with the impact of time changes on entities and relationships. In addition, time-aware entity pair representations are encoded using Transformer. At the same time, the specific representation of task relationship is generated by means of mean pooling layer aggregation. In addition, the model applies the reinforcement learning framework to the whole process of multi-hop path completion, constructs the strategy network, designs the new reward function to achieve the balance between path novelty and length, and helps Agent find the optimal path, thus realizing the completion of the temporal knowledge graph with few samples. In the training process, meta-learning is used to enable the model to quickly adapt to new tasks in the case of few samples. A huge number of experiments were carried out on two datasets to validate the model's validity.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多跳可解释元学习的短时知识图补全。
多跳路径补全是时间知识图补全的关键部分,其目的是推断复杂关系并获得可解释的补全结果。然而,传统的多跳路径补全模型主要关注具有足够关系实例的静态知识图,没有考虑时间戳信息对补全路径的影响,不适用于少跳关系。这些限制使得这些模型在处理时态知识图中的少量关系时性能不佳。为了解决这些问题,我们提出了基于多跳可解释性元学习(FTMI)的Few-shot Temporal知识图补全模型。首先,通过聚合任务关系的多跳邻居信息生成具有时间感知的实体表示来增强任务实体表示,时间戳信息维度的引入使FTMI模型能够理解和处理时间变化对实体和关系的影响。此外,使用Transformer对具有时间感知的实体对表示进行编码。同时,通过平均池化层聚合生成任务关系的具体表示。此外,该模型将强化学习框架应用于多跳路径完成的全过程,构建策略网络,设计新的奖励函数,实现路径新颖性和路径长度的平衡,帮助Agent找到最优路径,从而实现少样本时间知识图的完成。在训练过程中,利用元学习使模型能够在样本较少的情况下快速适应新的任务。在两个数据集上进行了大量的实验来验证模型的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Neural Networks
Neural Networks 工程技术-计算机:人工智能
CiteScore
13.90
自引率
7.70%
发文量
425
审稿时长
67 days
期刊介绍: Neural Networks is a platform that aims to foster an international community of scholars and practitioners interested in neural networks, deep learning, and other approaches to artificial intelligence and machine learning. Our journal invites submissions covering various aspects of neural networks research, from computational neuroscience and cognitive modeling to mathematical analyses and engineering applications. By providing a forum for interdisciplinary discussions between biology and technology, we aim to encourage the development of biologically-inspired artificial intelligence.
期刊最新文献
Estimating global phase synchronization by quantifying multivariate mutual information and detecting network structure. Event-based adaptive fixed-time optimal control for saturated fault-tolerant nonlinear multiagent systems via reinforcement learning algorithm. Lie group convolution neural networks with scale-rotation equivariance. Multi-hop interpretable meta learning for few-shot temporal knowledge graph completion. An object detection-based model for automated screening of stem-cells senescence during drug screening.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1