Automatic segmentation of extensor carpi ulnaris tendon and detection of tendinosis with convolutional neural networks.

IF 0.9 Q4 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Acta radiologica open Pub Date : 2024-11-30 eCollection Date: 2024-11-01 DOI:10.1177/20584601241297530
Mathias Hämäläinen, Markus Sormaala, Tuomas Kaseva, Eero Salli, Sauli Savolainen, Marko Kangasniemi
{"title":"Automatic segmentation of extensor carpi ulnaris tendon and detection of tendinosis with convolutional neural networks.","authors":"Mathias Hämäläinen, Markus Sormaala, Tuomas Kaseva, Eero Salli, Sauli Savolainen, Marko Kangasniemi","doi":"10.1177/20584601241297530","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Extensor Carpi Ulnaris (ECU) tendinosis, a frequent cause of chronic wrist pain, requires prompt diagnosis to prevent disability. This study demonstrates the use of convolutional neural networks (CNNs) for automated detection and segmentation of the ECU tendon and tendinosis in 2D axial wrist MRI.</p><p><strong>Purpose: </strong>To develop a CNN for the automated detection of ECU tendon and automatic delineation of tendinosis in 2D wrist MRI. The study serves as a proof-of-concept, demonstrating the feasibility of automating the segmentation of musculoskeletal structures in wrist MRI and offering an efficient solution for detecting tendinosis.</p><p><strong>Material and methods: </strong>In a retrospective analysis of 1081 patients undergoing wrist MRI imaging, 46 patients exhibited tendinosis. Two deep learning-based methods for segmenting the ECU tendon and T2 hyperintense lesions indicative of tendinosis from 2D axial wrist MRI series were developed and compared in this study. Both methods were trained and evaluated over all 46 patients using Dice score as the main evaluation metric.</p><p><strong>Results: </strong>The mean ECU tendon segmentation Dice score ranged from 0.61 to 0.64 (± 0.27 to 0.31). Tendinosis detection yielded a Dice score of 0.38 for both the threshold method (±0.19) and the CNN (±0.22). A Dice score > 0.50 indicated successful detection, with our methods achieving a detection rate of 72-76%.</p><p><strong>Conclusion: </strong>The developed CNN effectively detected and segmented the ECU tendon in 2D MRI series. Tendinosis was detected with comparable accuracy using both signal intensity thresholding and the trained CNN method.</p>","PeriodicalId":72063,"journal":{"name":"Acta radiologica open","volume":"13 11","pages":"20584601241297530"},"PeriodicalIF":0.9000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11608437/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta radiologica open","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/20584601241297530","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Extensor Carpi Ulnaris (ECU) tendinosis, a frequent cause of chronic wrist pain, requires prompt diagnosis to prevent disability. This study demonstrates the use of convolutional neural networks (CNNs) for automated detection and segmentation of the ECU tendon and tendinosis in 2D axial wrist MRI.

Purpose: To develop a CNN for the automated detection of ECU tendon and automatic delineation of tendinosis in 2D wrist MRI. The study serves as a proof-of-concept, demonstrating the feasibility of automating the segmentation of musculoskeletal structures in wrist MRI and offering an efficient solution for detecting tendinosis.

Material and methods: In a retrospective analysis of 1081 patients undergoing wrist MRI imaging, 46 patients exhibited tendinosis. Two deep learning-based methods for segmenting the ECU tendon and T2 hyperintense lesions indicative of tendinosis from 2D axial wrist MRI series were developed and compared in this study. Both methods were trained and evaluated over all 46 patients using Dice score as the main evaluation metric.

Results: The mean ECU tendon segmentation Dice score ranged from 0.61 to 0.64 (± 0.27 to 0.31). Tendinosis detection yielded a Dice score of 0.38 for both the threshold method (±0.19) and the CNN (±0.22). A Dice score > 0.50 indicated successful detection, with our methods achieving a detection rate of 72-76%.

Conclusion: The developed CNN effectively detected and segmented the ECU tendon in 2D MRI series. Tendinosis was detected with comparable accuracy using both signal intensity thresholding and the trained CNN method.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
尺侧腕伸肌腱的自动分割及卷积神经网络检测。
背景:尺侧腕伸肌(ECU)肌腱病是慢性腕关节疼痛的常见原因,需要及时诊断以预防残疾。本研究展示了卷积神经网络(cnn)在二维轴向手腕MRI中用于ECU肌腱和肌腱病的自动检测和分割。目的:研制一种在二维腕关节MRI中用于ECU肌腱自动检测和肌腱病自动圈定的CNN。该研究作为概念验证,证明了在手腕MRI中自动分割肌肉骨骼结构的可行性,并为检测肌腱病提供了有效的解决方案。材料和方法:回顾性分析1081例接受腕关节MRI成像的患者,其中46例表现为肌腱病。本研究开发并比较了两种基于深度学习的方法,用于分割ECU肌腱和2D轴向手腕MRI序列中指示肌腱病的T2高强度病变。以Dice评分作为主要评价指标,对所有46例患者进行两种方法的训练和评价。结果:ECU肌腱分割Dice评分平均值为0.61 ~ 0.64(±0.27 ~ 0.31)。阈值法(±0.19)和CNN(±0.22)的肌腱病检测的Dice评分均为0.38。Dice得分为bb0 0.50表示检测成功,我们的方法实现了72-76%的检测率。结论:发展的CNN在二维MRI序列中能有效地检测和分割ECU肌腱。使用信号强度阈值法和训练后的CNN方法以相当的准确性检测肌腱病。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
12 weeks
期刊最新文献
Cardiac metastasis of a soft tissue sarcoma: Case report and review of literature. Endovascular stent graft treatment for stenosis in isolated infrarenal abdominal aortic dissection: A case report. Intense fibroblast activation protein inhibitor localization around the site of embolized gastroduodenal artery in a patient with metachronous pancreatic adenocarcinoma: A potential pitfall in positron imaging. Automatic segmentation of extensor carpi ulnaris tendon and detection of tendinosis with convolutional neural networks. Differential diagnosis between low-risk and high-risk thymoma: Comparison of diagnostic performance of radiologists with and without deep learning model.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1