Multitask Learning for Estimation of Magnetic Parameters Using Pattern Recognition

IF 1.8 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY IEEE Open Journal of Nanotechnology Pub Date : 2024-11-08 DOI:10.1109/OJNANO.2024.3494836
Anubha Sehgal;Shipra Saini;Hemkant Nehete;Kunal Kranti Das;Sourajeet Roy;Brajesh Kumar Kaushik
{"title":"Multitask Learning for Estimation of Magnetic Parameters Using Pattern Recognition","authors":"Anubha Sehgal;Shipra Saini;Hemkant Nehete;Kunal Kranti Das;Sourajeet Roy;Brajesh Kumar Kaushik","doi":"10.1109/OJNANO.2024.3494836","DOIUrl":null,"url":null,"abstract":"Machine learning (ML) approaches present an effective technique for accurately and efficiently predicting device parameters. Using these techniques, we introduce a multi-task convolutional neural network (CNN) model and support vector regression (SVR) model that is intended to precisely estimate two important parameters of magnetic systems such as the Dzyaloshinskii-Moriya interaction (DMI) constant and the exchange constant (A\n<sub>ex</sub>\n). The magnetic Hamiltonian encapsulates various energy components, including exchange energy, DMI, Zeeman energy, and anisotropy energy, wherein factors such as saturation magnetization, DMI strength, exchange stiffness, and anisotropy constants influence their magnitudes. Conventionally, the estimation of these parameters has been computationally intensive and time-consuming. The CNN and SVR models can simultaneously estimate both the DMI constant and the exchange constant, making it a versatile tool for magnetic system characterization. The custom CNN model performs best for the DMI constant and A\n<sub>ex</sub>\n with R\n<sup>2</sup>\n scores of 0.991 and 0.998 respectively. The SVR model achieves R\n<sup>2</sup>\n scores of 0.927 and 0.989 for DMI constant and A\n<sub>ex</sub>\n respectively. The estimated values are in good agreement with true values, thus emphasizing the potential of ML methods for pattern recognition.","PeriodicalId":446,"journal":{"name":"IEEE Open Journal of Nanotechnology","volume":"5 ","pages":"149-155"},"PeriodicalIF":1.8000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10748362","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10748362/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Machine learning (ML) approaches present an effective technique for accurately and efficiently predicting device parameters. Using these techniques, we introduce a multi-task convolutional neural network (CNN) model and support vector regression (SVR) model that is intended to precisely estimate two important parameters of magnetic systems such as the Dzyaloshinskii-Moriya interaction (DMI) constant and the exchange constant (A ex ). The magnetic Hamiltonian encapsulates various energy components, including exchange energy, DMI, Zeeman energy, and anisotropy energy, wherein factors such as saturation magnetization, DMI strength, exchange stiffness, and anisotropy constants influence their magnitudes. Conventionally, the estimation of these parameters has been computationally intensive and time-consuming. The CNN and SVR models can simultaneously estimate both the DMI constant and the exchange constant, making it a versatile tool for magnetic system characterization. The custom CNN model performs best for the DMI constant and A ex with R 2 scores of 0.991 and 0.998 respectively. The SVR model achieves R 2 scores of 0.927 and 0.989 for DMI constant and A ex respectively. The estimated values are in good agreement with true values, thus emphasizing the potential of ML methods for pattern recognition.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于模式识别的多任务学习磁参数估计
机器学习(ML)方法为准确、高效地预测设备参数提供了一种有效的技术。利用这些技术,我们引入了一个多任务卷积神经网络(CNN)模型和支持向量回归(SVR)模型,旨在精确估计磁系统的两个重要参数,如Dzyaloshinskii-Moriya相互作用(DMI)常数和交换常数(Aex)。磁哈密顿量包含各种能量分量,包括交换能、DMI、塞曼能和各向异性能,其中饱和磁化强度、DMI强度、交换刚度和各向异性常数等因素影响它们的大小。传统上,这些参数的估计计算量大,耗时长。CNN和SVR模型可以同时估计DMI常数和交换常数,使其成为磁性系统表征的通用工具。自定义CNN模型对DMI常数和Aex的R2分别为0.991和0.998,表现最好。SVR模型对DMI常数和Aex的R2得分分别为0.927和0.989。估计值与真实值很好地一致,从而强调了机器学习方法在模式识别方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.90
自引率
17.60%
发文量
10
审稿时长
12 weeks
期刊最新文献
Front Cover IEEE Open Journal of Nanotechnology Information for Authors Approximation-Aware Training for Efficient Neural Network Inference on MRAM Based CiM Architecture Microwave-Assisted Synthesis and Characterization of Iron Oxide Nanoparticles for Advanced Biomedical Sensing Applications Improving Linearity and Symmetry of Synaptic Update Characteristics and Retentivity of Synaptic States of the Domain-Wall Device Through Addition of Edge Notches
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1